Project description:We investigated genome-wide changes in mRNA translation in Arabidopsis thaliana T87 suspension cell cultures which thought to be one of the host materials for bioreactor. Global translational repression was observed in cells of 8 day after inoculation that is thought to be stressful condition by the nutrient deficiency and hypoxia. This suggested the negative effect of the global translational repression on transgene expression. On the other hand, previous study using heat stress showed that some mRNAs were actively translated under such stressful condition, suggesting the existence of mRNA that were actively translated in cells of 8 day after inoculations. To identify mRNAs that escape global translational repression on 8 day and its cis-elements would be the 1st step to make the system for higher transgene expression by the escaping global translational repression. To this end, we subjected polysomal RNA and non-polysomal RNA from sucrose gradient fractionated cell lysates to the co-hybridization on Agilent Arabidopsis 4 Oligo Microarrays. The ratio of signal intensities (polysomal RNA: total RNA) was used as an indicator of the translation state for each transcript.
Project description:Comparison of Arabidopsis T87 cells transformed with an empty vector vs transcription factor (TF)-overexpressed lines of T87 cells.
Project description:We investigated genome-wide changes in mRNA translation in Arabidopsis thaliana T87 suspension cell cultures which thought to be one of the host materials for bioreactor. Global translational repression was observed in cells of 8 day after inoculation that is thought to be stressful condition by the nutrient deficiency and hypoxia. This suggested the negative effect of the global translational repression on transgene expression. On the other hand, previous study using heat stress showed that some mRNAs were actively translated under such stressful condition, suggesting the existence of mRNA that were actively translated in cells of 8 day after inoculations. To identify mRNAs that escape global translational repression on 8 day and its cis-elements would be the 1st step to make the system for higher transgene expression by the escaping global translational repression. To this end, we subjected polysomal RNA and non-polysomal RNA from sucrose gradient fractionated cell lysates to the co-hybridization on Agilent Arabidopsis 4 Oligo Microarrays. The ratio of signal intensities (polysomal RNA: total RNA) was used as an indicator of the translation state for each transcript. Experiment using two-fractionated mRNA, Polysomal mRNA vs. total mRNA. Biological replicates: 1
Project description:Plant hormones involved in environmental stresses, namely abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA), have been shown to interact with each other in a complex manner. To address the network of the hormone interactions, we have investigated the changes in expression under multiple hormone treatments, ABA+SA and ABA+JA. We chose cultured cells to remove the difference in the response to hormones among developmental cells or tissues. The cells were treated for 3hr and 24hr to see the rapid or transient response and steady-state response. The obtained data indicate that ABA and SA affect antagonistically, but these hormones affected many genes collaboratively. Indeed, according to the microarray data, there are many genes that responded only to ABA+SA. In addition, the ABA+SA responsive genes also responded to ABA+JA. These data suggest that hormone crosstalk is more complicated than expected and that more systematic analysis is required to untangle the hormone crosstalk network. To investigate the hormonal interactions, Arabidopsis T87 cultured cells were exposed to ABA, SA, or JA alone, or two hormones simultaneously, ABA+SA or ABA+JA, for 3hr and 24 hr. Comparing the data among those treatments, the relationships among these hormones were deduced.
Project description:Arabidopsis thaliana plant expressing 35S:WIND1 shows callus-like morphology without hormone treatment. Transcriptomes of the callus-like cell expressing 35S:WIND1, callus of T87 cultured cell, 2,4-D-induced callus and control seedling plant were compared by Agilent microarray.