Project description:To determine if the Drosophila MyoD homolog, nautilus, was activating any miRNA loci, similar to vertebrate MyoD, we compared the miRNA expression profiles between wild-type (w1118) and nautilus null embryos during the window of maximum nautilus expression (6-8hr AEL), using LNA arrays specifically designed to quantify miRNA levels in Drosophila (Exiqon). Expression levels for mir-309, mir-3, mir-286, mir-4, mir-5, and mir-6 from the 8-miR cluster, were significantly decreased in nautilus null embryos. It suggests that the intergenic 8-miR cluster, encoding eight miRNAs, is regulated by nautilus.
Project description:The cephalopod genus Nautilus is considered a "living fossil" with a contested number of extant and extinct species, and a benthic lifestyle that limits movement of animals between isolated seamounts and landmasses in the Indo-Pacific. Nautiluses are fished for their shells, most heavily in the Philippines, and these fisheries have little monitoring or regulation. Here, we evaluate the hypothesis that multiple species of Nautilus (e.g., N. belauensis, N. repertus and N. stenomphalus) are in fact one species with a diverse phenotypic and geologic range. Using mitochondrial markers, we show that nautiluses from the Philippines, eastern Australia (Great Barrier Reef), Vanuatu, American Samoa, and Fiji fall into distinct geographical clades. For phylogenetic analysis of species complexes across the range of nautilus, we included sequences of Nautilus pompilius and other Nautilus species from GenBank from localities sampled in this study and others. We found that specimens from Western Australia cluster with samples from the Philippines, suggesting that interbreeding may be occurring between those locations, or that there is limited genetic drift due to large effective population sizes. Intriguingly, our data also show that nautilus identified in other studies as N. belauensis, N. stenomphalus, or N. repertus are likely N. pompilius displaying a diversity of morphological characters, suggesting that there is significant phenotypic plasticity within N. pompilius.
Project description:The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6-77.4 km(-2)) dominated by males (83:17 male:female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide.
Project description:To determine if the Drosophila MyoD homolog, nautilus, was activating any miRNA loci, similar to vertebrate MyoD, we compared the miRNA expression profiles between wild-type (w1118) and nautilus null embryos during the window of maximum nautilus expression (6-8hr AEL), using LNA arrays specifically designed to quantify miRNA levels in Drosophila (Exiqon). Expression levels for mir-309, mir-3, mir-286, mir-4, mir-5, and mir-6 from the 8-miR cluster, were significantly decreased in nautilus null embryos. It suggests that the intergenic 8-miR cluster, encoding eight miRNAs, is regulated by nautilus. Two-condition experiment, wild type (w1118) vs. mutant (nautilus null). Biological replicates: 3 wild type, 3 mutants, independently isolated.
Project description:Vertical depth migrations into shallower waters at night by the chambered cephalopod Nautilus were first hypothesized early in the early 20(th) Century. Subsequent studies have supported the hypothesis that Nautilus spend daytime hours at depth and only ascend to around 200 m at night. Here we challenge this idea of a universal Nautilus behavior. Ultrasonic telemetry techniques were employed to track eleven specimens of Nautilus pompilius for variable times ranging from one to 78 days at Osprey Reef, Coral Sea, Australia. To supplement these observations, six remotely operated vehicle (ROV) dives were conducted at the same location to provide 29 hours of observations from 100 to 800 meter depths which sighted an additional 48 individuals, including five juveniles, all deeper than 489 m. The resulting data suggest virtually continuous, nightly movement between depths of 130 to 700 m, with daytime behavior split between either virtual stasis in the relatively shallow 160-225 m depths or active foraging in depths between 489 to 700 m. The findings also extend the known habitable depth range of Nautilus to 700 m, demonstrate juvenile distribution within the same habitat as adults and document daytime feeding behavior. These data support a hypothesis that, contrary to previously observed diurnal patterns of shallower at night than day, more complex vertical movement patterns may exist in at least this, and perhaps all other Nautilus populations. These are most likely dictated by optimal feeding substrate, avoidance of daytime visual predators, requirements for resting periods at 200 m to regain neutral buoyancy, upper temperature limits of around 25°C and implosion depths of 800 m. The slope, terrain and biological community of the various geographically separated Nautilus populations may provide different permutations and combinations of the above factors resulting in preferred vertical movement strategies most suited for each population.