Project description:MicroRNAs (miRNAs) are small non-coding RNAs that regulate target mRNAs by inducing degradation or preventing translation of their target mRNAs. Rose, Rosa rugosa Thunb., is an important ornamental and edible plant, yet there are only a few studies on the miRNAs of rose. Here we carried out computational and experimental analysis of miRNAs and phased small interfering RNAs (phasiRNAs) in rose by analyzing 10 small RNA profiles from roots, petals, pollens, stamens, and leaves. To identify the targets of miRNAs and phasiRNAs, we generated a degradome profile for rose leaf which is analyzed using the SeqTar algorithm. This study identified 25 conserved pre-miRNAs, of which 24 have not been reported previously. We also found 22 novel pre-miRNAs. Three hundred and thirty nine 21 nucleotide (nt) PHAS loci, and forty nine 24 nt PHAS loci were also identified. We identified more than 4000 putative targets of the conserved miRNAs using a criteria of less than 4 mismatches between miRNA and targets. Among these targets, at least 171 have shown significant accumulation of degradome reads. Our results demonstrate that the miR482 family triggers the generations of phasiRNAs by targeting nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes in rose. These results significantly enhanced our knowledge of the miRNAs and phasiRNAs, as well as their potential functions in rose.
Project description:MicroRNAs (miRNAs) are small non-coding RNAs that regulate target mRNAs by inducing degradation or preventing translation of their target mRNAs. Rose, Rosa rugosa Thunb., is an important ornamental and edible plant, yet there are only a few studies on the miRNAs of rose. Here we carried out computational and experimental analysis of miRNAs and phased small interfering RNAs (phasiRNAs) in rose by analyzing 10 small RNA profiles from roots, petals, pollens, stamens, and leaves. To identify the targets of miRNAs and phasiRNAs, we generated a degradome profile for rose leaf which is analyzed using the SeqTar algorithm. This study identified 25 conserved pre-miRNAs, of which 24 have not been reported previously. We also found 22 novel pre-miRNAs. Three hundred and thirty nine 21 nucleotide (nt) PHAS loci, and forty nine 24 nt PHAS loci were also identified. We identified more than 4000 putative targets of the conserved miRNAs using a criteria of less than 4 mismatches between miRNA and targets. Among these targets, at least 171 have shown significant accumulation of degradome reads. Our results demonstrate that the miR482 family triggers the generations of phasiRNAs by targeting nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes in rose. These results significantly enhanced our knowledge of the miRNAs and phasiRNAs, as well as their potential functions in rose.
Project description:MicroRNAs (miRNAs) are small non-coding RNAs that play important roles by regulating other genes. Rose, Rosa rugosa Thunb., is an important ornamental and edible plant, yet there are only a few studies on the miRNAs and their functions in rose. Here we carried out computational and experimental analysis of miRNAs, phased small interfering RNAs (phasiRNAs) and mRNAs in rose by analyzing 10 small RNA sequencing profiles from roots, petals, pollens, stamens, and leaves and 4 RNA-seq profiles in leaves and petals of rose. To identify the targets of miRNAs and phasiRNAs, we produced a degradome profile for rose leaf which is analyzed using the SeqTar algorithm. This study identified 25 conserved pre-miRNAs, of which 24 have not been reported previously. We also found 22 novel pre-miRNAs. Three hundred and thirty nine 21 nucleotide (nt) PHAS loci, and forty nine 24 nt PHAS loci were also identified. We identified more than 19,000 putative targets of the conserved miRNAs/tasiRNAs using a criteria of less than 4 mismatches between miRNA and targets. Among these targets, 592 have shown significant accumulation of degradome reads. Our results demonstrate that the miR482 family triggers the generations of phasiRNAs by targeting nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes in rose. Our results also suggest that the deregulated genes in leaves and petals are significantly enriched in GO and KEGG pathways related to metabolic processes and photosynthesis. These results significantly enhanced our knowledge of the miRNAs and phasiRNAs, as well as their potential functions in rose.
Project description:Lonicera japonica Thunb., known as Jin Yin Hua or Japanese honeysuckle, is an herbal medicine in Asian countries. Its flowers have been used as folk medicine for clinical practice or used as food or making healthy beverage for 1500 years in China. To investigate the molecular developmental processes from L. japonica buds to flowers under UV radiation, comparative proteomics analyses of buds and flowers were performed. Fifty-four differential proteins were identified including 42 increased proteins and 12 decreased proteins. The abundance of proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process under UV radiation. Six metabolites were identified and relatively quantified by LC-MS/MS in L. japonica buds and flowers. The 1,1-diphenyl-2-picrylhydrazyl assay revealed that antioxidant activity of L. japonica buds was better than that of flowers. These results suggest that UV-B radiation could induce the production of endogenous ethylene in L. japonica buds, which facilitate the buds blossom and activate the antioxidant system. Additionally, the higher content of metabolites and antioxidant capability in L. japonica buds indicates that L. japonica buds stage might be the better harvest time compared to the flower.