Project description:Increased root H+ secretion is known as a strategy of plant adaption to low phosphorus (P) stress by enhancing mobilization of sparingly soluble P-sources. However, it remains fragmentarywhether enhanced H+ exudation could reconstruct the plant rhizosphere microbial community under low P stress. The present study found that P deficiency led to enhanced H+ exudation from soybean (Glycine max) roots. Three out of all eleven soybean H+-pyrophosphatases (GmVP) geneswere up-regulated by Pi starvation in soybean roots. Among them, GmVP2 showed the highest expression level under low P conditions. Transient expression of a GmVP2-green fluorescent protein chimera in tobacco (Nicotiana tabacum) leaves, and functional characterization of GmVP2 in transgenic soybean hairy roots demonstrated that GmVP2 encoded a plasma membrane transporter that mediated H+ exudation. Meanwhile, GmVP2-overexpression in Arabidopsis thaliana resulted in enhanced root H+ exudation, promoted plant growth, and improved sparingly soluble Ca-P utilization. Overexpression of GmVP2 also changed the rhizospheric microbial community structures, as reflected by a preferential accumulation of acidobacteria in the rhizosphere soils. These results suggested that GmVP2 mediated Pi-starvation responsive H+ exudation,which is not only involved in plant growth and mobilization of sparingly soluble P-sources, but also affects microbial community structures in soils.
Project description:Rhizosphere is a complex system of interactions between plant roots, bacteria, fungi and animals, where the release of plant root exudates stimulates bacterial density and diversity. However, the majority of the bacteria in soil results to be unculturable but active. The aim of the present work was to characterize the microbial community associated to the root of V. vinifera cv. Pinot Noir not only under a taxonomic perspective, but also under a functional point of view, using a metaproteome approach. Our results underlined the difference between the metagenomic and metaproteomic approach and the large potentiality of proteomics in describing the environmental bacterial community and its activity. In fact, by this approach, that allows to investigate the mechanisms occurring in the rhizosphere, we showed that bacteria belonging to Streptomyces, Bacillus and Pseudomonas genera are the most active in protein expression. In the rhizosphere, the identified genera were involved mainly in phosphorus and nitrogen soil metabolism.
Project description:Treatment of rice roots with glutamate (Glu) induces systemic disease resistance against rice blast in leaves. To analyze the effect of Glu on the transcriptome of rice, rice roots were treated with Glu solution, and then fourth leaves were harvested and analyzed by Agilent rice microarray.