Project description:Antisense RNAs (asRNAs) have diverse functions across three superkingdoms of life. However, their physiological roles for photosynthesis, the most efficient conversion system of solar energy and carbon dioxide into desirable biofuel, are elusive. To understand asRNA-mediated photosynthetic response, we systematically identified non-coding asRNAs and analyzed their differential regulation upon high light and/or low temperature. We found that large fractions of antisense regions are pervasively transcribed and differentially induced upon the change of light and/or temperature. Particularly, photosynthesis and ribosome related genes are mostly regulated by asRNA. Futhermore, we found that 93 long non-coding asRNAs spanning more than half of the cognate open reading frames (ORFs), unexpectedly. Intriguingly, many of them are associated with photosynthetic genes and they have positive role to the expression level of their cognate ORFs. Thus, our systematic transcriptome analysis of photosynthetic response indicates that asRNAs may finetune transcriptional response to enable efficient photosynthetic energy conversion.
Project description:Cyanobacterial genus Leptolyngbya comprises genetically diverse species, but the availability of their complete genome information is limited. Here, we isolated Leptolyngbya sp. strain NIES-3755 from soil at the Toyohashi University of Technology, Japan. We determined the complete genome sequence of the NIES-3755 strain, which is composed of one chromosome and three plasmids.
Project description:Members of the cyanobacterial genus Synechococcus are abundant in marine environments. To better understand the genomic diversity of marine Synechococcus spp., we determined the complete genome sequence of a coastal cyanobacterium, Synechococcus sp. NIES-970. The genome had a size of 3.1 Mb, consisting of one chromosome and four plasmids.