Project description:The role of gut microbiome dysbiosis in the pathogenesis of psoriasis has gained increasing attention in recent years. Secukinumab, targeting interleukin (IL)-17, has a promising efficacy in psoriasis treatment. However, it remains unclear the gut microbiota alteration and related functional changes caused by successful secukinumab therapy in psoriatic patients. In our study, we compared fecal microbiome profile between psoriatic patients after secukinumab successful treatment (AT) and the other two groups, psoriatic patients without therapy (BT) and healthy people (H), respectively by using next-generation sequencing targeting 16S ribosomal RNA. Then, shotgun metagenomic sequencing was firstly used to characterize bacterial gut microbial communities and related functional change in AT group. We found that the diversity and structure of the microbial community in AT group were significantly changed compared to that of BT group and H group. AT group showed a microbiota profile characterized by increased proportions of the phylum Firmicute, families Ruminococcaceae, and a reduction in the phylum Bacteroidota (elevated F/B ratio). To detect functional alteration, we discovered that secukinumab treatment may construct a more stable homeostasis of gut microbiome with functional alteration. There were different KEGG pathways such as downregulated cardiovascular diseases pathway and upregulated infectious diseases in AT group. By metagenomic analysis, metabolic functional pathway was changed after secukinumab therapy. It seems that gut microbiota investigation during biologic drug treatment is useful for predicting the efficacy and risks of drug treatment in disease.
Project description:The role of gut microbiome dysbiosis in the pathogenesis of psoriasis has gained increasing attention in recent years. Secukinumab, targeting interleukin (IL)-17, has a promising efficacy in psoriasis treatment. However, it remains unclear the gut microbiota alteration and related functional changes caused by successful secukinumab therapy in psoriatic patients. In our study, we compared fecal microbiome profile between psoriatic patients after secukinumab successful treatment (AT) and the other two groups, psoriatic patients without therapy (BT) and healthy people (H), respectively by using next-generation sequencing targeting 16S ribosomal RNA. Then, shotgun metagenomic sequencing was firstly used to characterize bacterial gut microbial communities and related functional change in AT group. We found that the diversity and structure of the microbial community in AT group were significantly changed compared to that of BT group and H group. AT group showed a microbiota profile characterized by increased proportions of the phylum Firmicute, families Ruminococcaceae, and a reduction in the phylum Bacteroidota (elevated F/B ratio). To detect functional alteration, we discovered that secukinumab treatment may construct a more stable homeostasis of gut microbiome with functional alteration. There were different KEGG pathways such as downregulated cardiovascular diseases pathway and upregulated infectious diseases in AT group. By metagenomic analysis, metabolic functional pathway was changed after secukinumab therapy. It seems that gut microbiota investigation during biologic drug treatment is useful for predicting the efficacy and risks of drug treatment in disease.
Project description:We applied metagenomic shotgun sequencing to investigate the effects of ZEA exposure on the change of mouse gut microbiota composition and function.
Project description:Dysbiotic configurations of the human gut microbiota have been linked with colorectal cancer (CRC). Human small non-coding RNAs are also implicated in CRC and recent findings suggest that their release in the gut lumen contributes to shape the gut microbiota. Bacterial small RNAs (bsRNAs) may also play a role in carcinogenesis but their role is less explored. Here, we performed small RNA and shotgun sequencing on 80 stool specimens of patients with CRC, or adenomas, and healthy subjects collected in a cross-sectional study to evaluate their combined use as a predictive tool for disease detection. We reported a considerable overlap and correlation between metagenomic and bsRNA quantitative taxonomic profiles obtained from the two approaches. Furthermore, we identified a combined predictive signature composed by 32 features from human and microbial small RNAs and DNA-based microbiome able to accurately classify CRC from healthy and adenoma samples (AUC= 0.87). In summary we reported evidence that host-microbiome dysbiosis in CRC can be observed also by altered small RNA stool profiles. Integrated analyses of the microbiome and small RNAs in the human stool may provide insights for designing more accurate tools for diagnostic purposes.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary RNA-seq and DNA-seq data sets of the microbiome from this study have also been deposited at ArrayExpress under accession number E-MTAB-3562 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3562/ ).
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups
Project description:The neurotoxic effects and mechanisms of low-dose and long-term sulfamethoxazole (SMZ) exposure remain unknown. This study exposed zebrafish to environmental SMZ concentrations and observed behavioral outcomes. SMZ exposure increased hyperactivity and altered the transcript levels of 17 genes associated with neurological function. It impaired intestinal function by reducing the number of intestinal goblet cells and lipid content. Metabolomic results indicated that the contents of several lipids and amino acids in the gut were altered, which might affect the expression levels of neurological function-related genes. Metagenomic results demonstrated that SMZ exposure substantially altered the composition of the gut microbiome. Zebrafish receiving a transplanted fecal microbiome from the SMZ group were also found to exhibit abnormal behavior, suggesting that the gut microbiome is an important target for SMZ exposure-induced neurobehavioral abnormalities. Multi-omics correlation analysis revealed that gut micrometabolic function was related to differential gut metabolite levels, which may affect neurological function through the gut-brain-axis. Reduced abundance of Lefsonia and Microbacterium was strongly correlated with intestinal metabolic function and may be the key bacterial genera in neurobehavioral changes. This study confirms for the first time that SMZ-induced neurotoxicity in zebrafish is closely mediated by alterations in the gut microbiome.
Project description:The TransplantLines Gut Microbiome study includes raw data generated by shotgun metagenomic sequencing of fecal samples of solid organ transplant recipients and basic phenotypes (age and sex, BMI).
Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary transcription profiling data from the mouse hosts have also been deposited at ArrayExpress under accession number E-MTAB-3590 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3590/ ).