Project description:Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a life-threatening condition characterized by lung inflammation and damage. Mechanical ventilation can exacerbate this condition. The gut microbiome, known to impact health, might have implications for ALI/ARDS outcomes. This study aimed to investigate the effects of probiotics in a murine ALI model. Using a two-hit approach combining lipopolysaccharide-induced inflammation and mechanical ventilation-induced injury, a severe lung injury model was established in mice. Probiotics containing Bifidobacterium spp. were administered due to their known interactions with immune cells and immune pathway modulation. The effects of probiotic administration on lung inflammation severity were evalu ated through biochemical, and histological analyses of lung tissue, and single-cell RNA sequencing analysis. Probiotic administration increased Bifidobacterium spp. composition in the gut microbiota and mitigated lung damage and inflammation. Single-cell RNA sequencing revealed the stimulation of Anxa1high macrophages, possibly promoting anti-inflammatory responses.
Project description:Human milk oligosaccharides (HMOs) function as prebiotics for beneficial bacteria in the developing gut, often dominated by Bifidobacterium spp. To understand the relationship between Bifidobacterium utilizing HMOs and how the metabolites that are produced could affect the host, we analyzed the metabolism of HMO 2’-fucosyllactose (2’-FL), 3-fucosyllactose (3FL and difucosyllactose (DFL) in Bifidobacterium longum ssp. infantis Bi-26 and ATCC15697. RNA-seq and metabolite analysis was performed on samples at early (A600=0.25), mid-log (0.5-0.7) and late-log phases (1.0-2.0) of growth.
Project description:Bifidobacterium longum subsp. infantis is a bacterial commensal that colonizes the breast-fed infant gut where it utilizes indigestible components delivered in human milk. Accordingly, human milk contains several non-protein nitrogenous molecules, including urea at high abundance. This project investigates the degree to which urea is utilized as a primary nitrogen source by Bifidobacterium longum subsp. infantis and incorporation of hydrolysis products into the expressed proteome.
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium bifidum SC555 to pooled and individual human milk oligosaccharides (HMO) relative to lactose
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium longum subsp. infantis to human milk urea compared to complex nitrogen and L-cysteine.
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium longum subsp. Infantis to pooled and individual human milk oligosaccharides (HMO) relative to lactose
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium longum subsp. longum SC596 to pooled and individual human milk oligosaccharides (HMO) relative to lactose
Project description:Human milk oligosaccharides (HMOs) function as prebiotics for beneficial bacteria in the developing gut, often dominated by Bifidobacterium spp. To understand the relationship between Bifidobacterium utilizing HMOs and how the metabolites that are produced could affect the host, we analyzed the metabolism of HMO 2’-fucosyllactose (2’-FL) in Bifidobacterium longum ssp. infantis Bi-26. RNA-seq and metabolite analysis (NMR/GCMS) was performed on samples at early (A600=0.25), mid-log (0.5-0.7) and late-log phases (1.0-2.0) of growth. Transcriptomic analysis revealed many gene clusters including three novel ABC-type sugar transport clusters to be upregulated in Bi-26 involved in processing of 2’-FL along with metabolism of its monomers glucose, fucose and galactose. Metabolite data confirmed the production of formate, acetate, 1,2-propanediol, lactate and cleaving of fucose from 2’-FL. The formation of acetate, formate, and lactate showed how the cell uses metabolites during fermentation to produce higher levels of ATP (mid-log compared to other stages) or generate cofactors to balance redox. We concluded 2’-FL metabolism is a complex process involving gene clusters throughout the genome producing more metabolites compared to lactose. These results provide valuable insight on the mode-of-action of 2’-FL utilization by Bifidobacterium longum ssp. infantis Bi-26.