Project description:To investigate the role of lncRNAs on lipid metabolism, we did RNAseq to find the difference among large yellow croaker fed with fish oil (FO), soybean oil (SO), olive oil (OO), and palm oil (PO) diets
Project description:Oil palm (Elaeis guineensis Jacq.) is one of the most important oil-producing crops in the world. However, the demand for oil from this crop will increase in the future. A comparative gene expression profile of the oil palm leaves was needed in order to understand the key factors that influence the oil production. Here, we reported an RNA-seq dataset from three different oil yields and three different genetic populations of oil palm. All raw sequencing reads were obtained from an Illumina NextSeq 500 platform. We also provide a list of the genes and their expression levels resulting from the RNA-sequencing. This transcriptomic dataset will provide a valuable resource for increasing oil yield.
Project description:To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.
Project description:Proteome profiles of oil palm mesocarp from different stages of fruit development were analysed using two-dimensional gel electrophoresis (2DE) and the significantly changed protein were identified using by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF/TOF) and functionally classified using ontology analysis.