Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and the strain Pseudomonas fluorescens Pf29Arp during their interactions in vitro.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and one detrimental bacterial strain during their interactions in vitro.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and one detrimental bacterial strain during their interactions in vitro.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and of two beneficial, and neutral soil bacteria during their interactions in vitro.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and one detrimental bacterial strain during their interactions in vitro. We performed six hybridizations (macroarray) with samples derived from Laccaria bicolor cultivated alone (3 biological replicates and with C. fungivorans Ter331 (3 biological replicates)
Project description:Ectomycorrhizal fungi are dependent on host trees for carbon supply. In return ectomycorrhizal fungi supply trees with water and nutrients. It is known that when ectomycorrhizal fungi have exploited a nutrient rich patch in soil, the carbon allocation to mycelia in that patch is reduced, with the consequence of mycelia dying, but less is known of the dynamics of this senescence. We cultivated the ectomycorrhizal fungus Paxillus involutus in an axenic system. We collected growth and transcriptome data at different stages of carbon starvation during fungal growth. Carbon starvation induced a decrease in fungal biomass, which coincided with the release of NH4+ and the expression of genes connected with autophagy as well as protease and chitinase activity. Monoaromatic compounds, chitin and protease activity was detected in the liquid growth media during carbon starvation. The exudation of NH4+ and increase of monoaromatic compound during C starvation suggests senescence and autolysis of P. involutus. Together with the upregulation of genes involved in autophagy, chitinase and endopeptidase activity this points towards a controlled senescence including recycling of compounds originating from the fungi. Reduced C allocation to ectomycorrhizal mycelia in recently depleted nutrient patches in forest soils must be of ubiquitous nature. Understanding the mechanisms during exploitation of nutrients by ectomycorrhizal fungi is of great importance for understanding carbon and nutrient dynamics in forest soils. This is to our knowledge the first study describing the carbon starvation response in an ectomycorrhizal fungus.
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and of two beneficial, and neutral soil bacteria during their interactions in vitro. We performed nine hybridizations (macroarray) with samples derived from Laccaria bicolor cultivated alone (3 biological replicates), with P. fluorescens BBc6R8 (3 biological replicates) and with Pf29Arp (3 biological replicates)
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and the strain Pseudomonas fluorescens Pf29Arp during their interactions in vitro. We performed six hybridizations (shotgun DNA microarray) with samples derived from Pseudomonas fluorescens Pf29Arp cultivated alone or with Laccaria bicolor S238N in vitro (3 control biological replicates and 3 biological replicates with L. bicolor)
Project description:In order to get insights into the ability of ectomycorrhizal fungi to perceive their biotic environment as well as into the mechanisms of the interactions between ectomycorrhizal fungi and soil bacteria, we analysed the transcriptomic response of the ectomycorrhizal fungus L. bicolor and one detrimental bacterial strain during their interactions in vitro. We performed hybridizations (whole genome array) with samples derived from Collimonas fungivorans Ter331cultivated alone or with Laccaria bicolor S238N in vitro (2 control biological replicates and 2 biological replicates with L. bicolor)
Project description:Ectomycorrhizal fungi are dependent on host trees for carbon supply. In return ectomycorrhizal fungi supply trees with water and nutrients. It is known that when ectomycorrhizal fungi have exploited a nutrient rich patch in soil, the carbon allocation to mycelia in that patch is reduced, with the consequence of mycelia dying, but less is known of the dynamics of this senescence. We cultivated the ectomycorrhizal fungus Paxillus involutus in an axenic system. We collected growth and transcriptome data at different stages of carbon starvation during fungal growth. Carbon starvation induced a decrease in fungal biomass, which coincided with the release of NH4+ and the expression of genes connected with autophagy as well as protease and chitinase activity. Monoaromatic compounds, chitin and protease activity was detected in the liquid growth media during carbon starvation. The exudation of NH4+ and increase of monoaromatic compound during C starvation suggests senescence and autolysis of P. involutus. Together with the upregulation of genes involved in autophagy, chitinase and endopeptidase activity this points towards a controlled senescence including recycling of compounds originating from the fungi. Reduced C allocation to ectomycorrhizal mycelia in recently depleted nutrient patches in forest soils must be of ubiquitous nature. Understanding the mechanisms during exploitation of nutrients by ectomycorrhizal fungi is of great importance for understanding carbon and nutrient dynamics in forest soils. This is to our knowledge the first study describing the carbon starvation response in an ectomycorrhizal fungus. A one-chip study (data from 12 subarrays collected from a 12-plex Nimblegen microarray (ID 527890) using total RNA recovered from three separate glass-bead cultures of Paxillus involutus (ATCC200175) grown on Minimum Melin Norkrans medium (MMN) amended with ammonium (C/N ratio 3) and harvested at different times of carbon starvation.)