Project description:This transcriptional analysis is a follow up to a population genomic investigation of 3615 Streptococcus pyogenes serotype M1 strains whch are responsible for an epidemic of human invasive infections (www.pnas.org/cgi/doi/10.1073/pnas.1403138111), The goal was to assess gene expression differences between predecessor pre-epidemic M1 strains and their descendent epidemic M1 strains to gain insights into the underlying genetic basis for the shift in the frequency and severity of human infections caused by these pathogenic bacteria
Project description:This transcriptional analysis is a follow up to a population genomic investigation of 3615 Streptococcus pyogenes serotype M1 strains whch are responsible for an epidemic of human invasive infections (www.pnas.org/cgi/doi/10.1073/pnas.1403138111), The goal was to assess gene expression differences between predecessor pre-epidemic M1 strains and their descendent epidemic M1 strains to gain insights into the underlying genetic basis for the shift in the frequency and severity of human infections caused by these pathogenic bacteria The transcriptomes of 7 GAS M1 strains, 4 pre-epidemic and 3 epidemic, were compared at two phases of growth, mid-exponential and early-stationary, using 3 biologial replicates, to identify genes differentially expressed between the pre-epidemic and epidemic isolates with the goal of to gaining insight into the underlying genetic basis for the evolutionary emergence, increased frequency and severity of the epidemic strains relative to the pre-epidemic strains
Project description:Here, we report the completely annotated genome sequence of Streptococcus pyogenes M1 476 isolated from a patient with streptococcal toxic shock syndrome (STSS) during pregnancy. The genome sequence will provide new insights into the mechanisms underlying STSS.
Project description:Proteomics characterisation of membrane vesicles (MV) and corresponding membranes derived from Streptococcus pyogenes M1 (clinical isolate ISS3348) grown to late-logarithmic phase in THB media.