Project description:Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.
Project description:Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.
Project description:This study is committed to de novo sequencing and comparative analysis of the transcriptomes of healthy (H) and Tapping panel dryness (TPD)-affected (T) rubber trees to identify the genes and pathways related to the TPD. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from H and T library, respectively using Illumina Hiseq 2000 sequencing technology. De novo assemblies yielded 141,456 and 169,285 contigs, and 96,070 and 112,243 unigenes from H and T library, respectively. Among 66535 genes, 107021 genes were identified as differential expressed genes between H and T library via comparative transcript profiling. A majority of genes involved in natural rubber biosynthesis and jasmonate synthesis with most potential relevance in TPD occurrence were found to be differentially expressed. In TPD-affected trees, the expression of most genes related to the latex biosynthesis and jasmonate synthesis was severely inhibited and it probably the direct cause of the TPD. Our de novo transcriptome data sets provide a significant resource for the discovery of genes related to TPD and improve our understanding the occurrence and maintainace of TPD.
Project description:Wood stiffness is the most important wood quality trait of forest trees for structural timber production. We investigated genes differentially transcribed in radiate pine trees with distinct wood stiffness using bulked segregant analysis (BSA) and cDNA microarrays. Transcript accumulation in earlywood (EW) and latewood (LW) of high (HS) and low stiffness (LS) trees in two progeny trials was compared.
Project description:Wood density is a foundamental quality trait for structural timber, bioenergy and pulp industries. We investigated genes differentially transcribed in radiate pine juvneile trees with distinct wood density using cDNA microarrays.