Project description:To unravel the fine architecture of neocentromeres found in three well-differentiated liposarcoma (WDLPS) cell lines as patchworks of multiple short amplified sequences, disclosing a much more higher complexity than previously reported. Next generation sequencing data (WGS, RNA-seq, CENP-A/ChIP-seq) are available at the Sequence Read Archive (BioProject ID: PRJNA378952).
Project description:Agilent whole exome hybridisation capture was performed on genomic DNA derived from Chondrosarcoma cancer and matched normal DNA from the same patients. Next Generation sequencing performed on the resulting exome libraries and mapped to build 37 of the human reference genome to facilitate the identification of novel cancer genes. Now we aim to re find and validate the findings of those exome libraries using bespoke pulldown methods and sequencing the products.
Project description:In order to map levels of genome-wide HP1a occupancy we applied DamID (van Steensel & Henikoff, Nat Biotech, 2000; PMID: 10748524) in combination with next-generation sequencing of methylated GATC fragments. Mapping by next-generation sequencing makes it possible to examine heterochromatic regions that were not covered by earlier datasets which were generated using microarrays.
Project description:We developed Del-Read, an algorithm targeting medium-sized deletions (6-100 BPs) in short-reads, which are challenging for current variant callers relying on alignment. Our focus was on Micro-Homology mediated End Joining deletions (MMEJ-dels), prevalent in myeloid malignancies. MMEJ-dels follow a distinct pattern, occurring between two homologies, allowing us to generate a comprehensive list of MMEJ-dels in the exome. Using Del-Read, we identified numerous novel germline and somatic MMEJ-dels in Beat AML and TCGA-breast datasets. Validation in 500 healthy individuals confirmed their presence.
Project description:Objectives: To perform long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors. We aim to discover new transcripts and protein isoforms expressed during immune responses to diverse pathogens. Methods: PBMCs were exposed to four microbial stimuli for 24 hours: the TLR4 ligand lipopolysaccharide (LPS), the TLR3 ligand Poly(I:C), heat-inactivated Staphylococcus aureus, Candida albicans, and RPMI medium as negative controls. Long-read sequencing (PacBio) of one donor and secretome proteomics and short-read sequencing of five donors were performed. IsoQuant was used for transcriptome construction, Metamorpheus/FlashLFQ for proteome analysis, and Illumina short-read 3’-end mRNA sequencing for transcript quantification. Results: Long-read transcriptome profiling reveals the expression of novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. We observe widespread loss of intron retention as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. In general, RNA expression differences did not result in differences in the amounts of secreted proteins. Interindividual differences in the proteome were larger than the differences between stimulated and unstimulated PBMCs. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and Poly(I:C)-stimulated PBMCs. Conclusion: Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.
Project description:Transcribed regions in adult temporal lobe, hippocampus and frontal lobe were assesed by strand specific next generation sequencing of polyA RNA. Strand specific mRNA expression profiles of three human adult brain regions were generated by next generation sequencing using Illumina GAIIx
Project description:In order to benchmark the reproducibility of Affymetrix 238K Sty arrays for detecting copy-number alterations. We performed replicate hybridizations of 3 tumor cell lines and 2 paired normal cell lines obtained from the American Type Culture Collection (ATCC). We calculated copy numbers at each SNP probeset by array pre-processing with the GISTIC algorithm (PMID: 18077431). For each SNP probeset, we calculated the median copy number across replicate arrays. The median copy number profile for each tumor cell line was segmented with the GLAD algorithm (PMID: 15381628) to partition the genome into regions of constant copy number. We compared the copy-number alterations detected by GLAD segmentation of these arrays with statistical analyses of short sequence reads obtained from the Illumina/Solexa 1G GenomeAnalyzer. Shotgun sequencing results can be found in the NCBI Short Read Archive, accession number SRP000246. Keywords: disease state analysis 77 replicates of HCC1143 (breast ductal carcinoma), 69 replicates of HCC1143BL (matched normal), 42 replicates of HCC1954 (breast ductal carcinoma), 36 replicates of HCC1954BL (matched normal), 1 replicate of NCI-H2347 (lung adenocarcinoma)
Project description:Targeted enrichment-based next-generation sequencing or whole exome sequencing were taken for patients with hypomyelinating leukodystrophies to reveal genetic aetiologies. All genomic DNA used in the experiments was extracted from the peripheral leukocytes. A complete kit was synthetized using the Agilent SureSelect Target Enrichment technique, capturing the coding regions from 104 candidate genes, including their exons and exon-intron boundaries (11,473 probes, 383.065 kbp in total). The following NGS which included equipment and reagents was performed on an Illumina NEXTSEQ500 platform manufactured by Illumina (San Diego, California, USA) using paired-end sequencing of 110 bp. The clean paired-end reads were aligned to the human reference genome build hg19, which was previously annotated using ANNOVAR, in addition to insertion-deletion (indel) and single-nucleotide polymorphism (SNP) calling.
Project description:Targeted enrichment-based next-generation sequencing or whole exome sequencing were taken for patients with hypomyelinating leukodystrophies to reveal genetic aetiologies. All genomic DNA used in the experiments was extracted from the peripheral leukocytes. A complete kit was synthetized using the Agilent SureSelect Target Enrichment technique, capturing the coding regions from 104 candidate genes, including their exons and exon-intron boundaries (11,473 probes, 383.065 kbp in total). The following NGS which included equipment and reagents was performed on an Illumina NEXTSEQ500 platform manufactured by Illumina (San Diego, California, USA) using paired-end sequencing of 110 bp. The clean paired-end reads were aligned to the human reference genome build hg19, which was previously annotated using ANNOVAR, in addition to insertion-deletion (indel) and single-nucleotide polymorphism (SNP) calling.