Project description:Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Middle East. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp Vespa orientalis and in most cases it is resistant to varroa mites. The Thorax control sample of A. m. syriaca in this experiment was originally collected and stored since 2001 from Wadi Ben Hammad a remote valley in the southern region of Jordan. Using morphometric and Mitochondrial DNA markers it was proved that bees from this area had show higher similarity than other samples collected from the Middle East as represented by reference samples collected in 1952 by Brother Adam. The samples L1-L5 are collected from the National Center for Agricultural Research and Extension breading apiary which was originally established for the conservation of Apis mellifera syriaca. Goal was to use the genetic information in the breeding for varroa resistant bees and to determine the successfulness of this conservation program. Project funded by USAID-MERC grant number: TA-MOU-09-M29-075.
Project description:In Apis mellifera, the female eggs can develop into workers or queen depending on the diet offered during early development. The outputs of the developed honeybee females are two morphs with particular morphological traits and related physiology. The differential feeding regime experienced by the queen and the worker larvae of the honeybee Apis mellifera shapes a complex endocrine response cascade that ultimately sets up differences in brain morphologies. Herein we report on aspects of brain morphogenesis during larval development and the brain gene expression signature of fourth instar larvae (L4) of both castes, a developmental stage characterized by the greatest differences in juvenile hormone (JH) titers between castes Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from brain of fourth instar larvae honeybees of both castes we present a list of differentially expressed genes.
Project description:In Apis mellifera, the female eggs can develop into workers or queen depending on the diet offered during early development. The outputs of the developed honeybee females are two morphs with particular morphological traits and related physiology. The differential feeding regime experienced by the queen and the worker larvae of the honeybee Apis mellifera shapes a complex endocrine response cascade that ultimately sets up differences in brain morphologies. Herein we report on aspects of brain morphogenesis during larval development and the brain gene expression signature of fourth instar larvae (L4) of both castes, a developmental stage characterized by the greatest differences in juvenile hormone (JH) titers between castes Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from brain of fourth instar larvae honeybees of both castes we present a list of differentially expressed genes. Analysis used one dye-swap combination to compare workers and queens brain development at fourth instar larvae when juvenile hormone titers is higher in queens.
Project description:We analyzed the changes in the brain tissue of Apis mellifera ligustica at the molecular level by sequencing after using fluvalinate. We found that the differentially expressed miRNAs (DEM) may be involved in hippocampal cell apoptosis and damage to memory functions. This result may be related to behaviors observed after the administration of this medication, such as a lack of homing at night and behavioral disturbances. Overall, our results provide new information about the molecular mechanisms and pathways of fluvalinate action in the brain tissue of Apis mellifera ligustica.
Project description:Apis mellifera intermissa (Buttel-Reepen, 1906) is the native honeybee subspecies of Algeria. A.m.intermissa occurs in Tunisia, Algeria and Morocco, between the Atlas and the Mediterranean and Atlantic coasts (Ruttner, 1988), in an area of more than 2500 km long. Intermissa indicates the position through this bee races between tropical Africa and European breeds (Peyvel, 1994). The settlement area of the Tellian extends from Tunisia to Morocco. Ruttner et al (1978) describes the pure Tellian. It is a black hair of his coat poverty brings out the black color. It is a small size, there are some times light illumination on the tergites. This bee is very aggressive, nervous, sick to take part, as swarms huge fall and even produced many brood and can build up to one hundred queen cells (Le Conte, 2002). A.m.intermissa is prone to swarming, shows an aggressive behaviour and an abundant use of propolis (Ruttner 1988). This study is part of the project funded by the USAID Grant No. TA-MOU-08-M29-075.
Project description:In Apis mellifera, the female eggs can develop into workers or queen depending on the diet offered during early development. The outputs of the developed honeybee females are two morphs with particular morphological traits and related physiology. Among the specialized structures in workers the hind tibia forms the corbicula or the pollen basket, a smooth region surrounded by a row of a long scopal hairs, used for carrying pollen and other materials to the nest. This morphological trait and the respective behaviour are absent in queens. Herein we show details of the initial steps of hind legs morphogenesis in honeybee castes. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupa honeybees of both castes we present a list of differentially expressed genes.
Project description:The 5’ LongSAGE (5’LS) approach provides a powerful genomic tool for identifying Transcription start sites (TSSs) in sequenced genome. The main purpose of this study is to identify the actual TSSs of expressed genes as well as the usage of different TSSs in Apis mellifera. We also wish to provide expression evidence for the in silico predicted genes and reveal some previously undiscovered genes. The transcriptome of adult drone head was fathomed through 5’LS analysis, and TSSs of the expressed genes were determined by mapping the 5’LS tag sequences to the honeybee genome sequences.
Project description:Olfaction system plays a fundamental role in mediating insect behavior. Besides, the division of queen, worker and drone, honeybee also exhibit an age-dependent division of labor. Worker bees perform discrete sets of behaviors throughout their lifespan. These behavioral states rely on the sense of the environments and chemical communications via their olfactory system - antennae. However, the olfactory adaption mechanism of workers in these processes of behavioral development is still unclear. In this study, we conducted a comprehensive and quantitative analysis of gene expression in Apis mellifera antenna of newly emerged workers, nurses, foragers, and defenders using RNA-seq. We found that antennae tissues continue to develop after transformation from pupae to adult. Additionally, we identified both developmental and labor-division specific expressed genes. We validated the unexpected discovery of major royal jelly protein genes, which are highly and specifically expressed in nurse honeybee workers. We further identified and validated that significant alternative splicing events are also involved in the development and division of labor. These findings provided a comprehensive transcriptome profile and new perspective into the molecular mechanism underlying honeybee division of labor.