Project description:Lactococcus lactis subsp. lactis strain YF11 is a food preservative bacterium with a high capacity to produce nisin. Here, we announce the draft genome sequence of Lactococcus lactis subsp. lactis YF11 (2,527,433 bp with a G+C content of 34.81%).
Project description:Background: milk is considered an important source of bioactive peptides, which can be produced by endogenous or starter bacteria, such as lactic acid bacteria, that are considered effective and safe producers of food-grade bioactive peptides. Among the various types of milk, donkey milk has been gaining more and more attention for its nutraceutical properties. Methods: Lactobacillus rhamnosus 17D10 and Lactococcus lactis subsp. cremoris 40FEL3 were selected for their ability to produce peptides from donkey milk. The endogenous peptides and those obtained after bacterial fermentation were assayed for their antioxidant, antibacterial and antiviral activities. The peptide mixtures were characterized by means of LC-MS/MS, and then analyzed in silico using the Milk Bioactive Peptide DataBase. Results: the peptides produced by the two selected bacteria enhanced the antioxidant activity and reduced E. coli growth. Only the peptides produced by L. rhamnosus 17D10 were able to reduce S. aureus growth. All the peptide mixtures were able to inhibit the replication of HSV-1 by more than 50%. Seventeen peptides were found to have 60% sequence similarity with already known bioactive peptides. Conclusion: a lactic acid bacterium fermentation process is able to enhance the value of donkey milk through bioactivities that are important for human health.
Project description:We report here the 2,576,542-bp genome annotated draft assembly sequence of Lactococcus lactis subsp. lactis 1AA59. This strain-isolated from a traditional cheese-produces putrescine, one of the most frequently biogenic amines found in dairy products.
Project description:Lactococcus lactis subsp. lactis NCDO 2118 is a nondairy lactic acid bacterium, a xylose fermenter, and a gamma-aminobutyric acid (GABA) producer isolated from frozen peas. Here, we report the complete genome sequence of L. lactis NCDO 2118, a strain with probiotic potential activity.
Project description:Lactococcus lactis subsp. lactis is a food bacterium that has been utilized for decades in food fermentation and the development of high-value industrial goods. Among these, nisin, which is produced by several strains of L. lactis subsp. lactis, plays a crucial role as a food bio-preservative. The gene expression for nisin synthesis was evaluated using qPCR analysis. Additionally, a series of re-transformations of the strain introducing multiple copies of the nisA and nisRK genes related to nisin production were developed. The simultaneous expression of nisA and nisZ genes was used to potentiate the effective inhibition of foodborne pathogens. Furthermore, qPCR analysis indicated that the nisA and nisRK genes were expressed at low levels in wild-type L. lactis subsp. lactis. After several re-transformations of the strain with the nisA and nisRK genes, a high expression of these genes was obtained, contributing to improved nisin production. Also, co-expression of the nisA and nisZ genes resulted in extremely effective antibacterial action. Hence, this study would provide an approach to enhancing nisin production during industrial processes and antimicrobial activity.
Project description:Amino acid assimilation and metabolism are crucial for bacterial growth and survival and this is particularly obvious for lactic acid bacteria (LAB) that are generally auxotroph for various amino acids. However, amino acid assimilation is poorly characterized and a complete description of the response during amino acid starvation is still lacking in LAB. In this context, the global response of the LAB model Lactococcus lactis was characterized during isoleucine starvation in batch culture. The stress was imposed by isoleucine natural consumption in an initially rich chemically defined medium. Dynamic analyses were performed both using transcriptomic and proteomic approaches. The response was found to occur gradually and could be divided into three major parts that were firstly deduced from transcriptomic analysis and generally corroborated by proteomic results: (i) a global repression of biogenic processes (transcription, translation, and carbon metabolism and transport), (ii) a specific response related to the limiting nutrient (numerous pathways belonging to carbon or nitrogen metabolism and leading to isoleucine supply were activated) and (iii) an additional response connected to oxidative stress (induction of aerobic metabolism, electron transport, thioredoxin metabolism and pyruvate dehydrogenase). The involvement of various regulatory mechanisms such as growth rate regulation, stringent response, CodY, GlnR, and CcpA regulations, was discussed on the basis of transcriptomic data comparisons. Above the full description of L. lactis isoleucine starvation response, this work additionally provided a complex but realistic outlook of the regulation network involved in isoleucine starvation. Such integrated and comparative approach will allow, by its implementation to other regulations and environmental conditions, the whole regulatory network of L. lactis or any other microorganism to be deciphered.
Project description:We report here the complete genome sequence of Lactococcus lactis subsp. lactis strain A12, a strain isolated from sourdough. The circular chromosome and the four plasmids reveal genes involved in carbohydrate metabolism that are potentially required for the persistence of this strain in such a complex ecosystem.
Project description:We report the complete genome sequence of Lactococcus lactis subsp. lactis KLDS4.0325, a probiotic bacterium isolated from homemade koumiss in Xinjiang, China. We have determined the complete genome sequence of strain KLDS4.0325, which consists of a chromosome and three plasmids and reveals genes that are likely to be involved in dairy fermentation and that have probiotic qualities.