Project description:We explored the transcriptional response of Faecalibacterium prausnitzii A2-165 when exposed to cell-free supernatants from different Lactobacillus, Streptococcus and Lactococcus strains. For that, we sequenced its RNA and looked for significant differences in the expression levels among the supernatants groups.
Project description:Faecalibacterium prausnitzii is a dominant member of healthy human colon microbiota, regarded as a beneficial gut bacterium due to its ability to produce anti-inflammatory substances. However, little is known about how F. prausnitzii utilizes the nutrients present in the human gut, influencing its prevalence in the host intestinal environment. The phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) is a widely distributed and highly efficient carbohydrate transport system found in most bacterial species that catalyses the simultaneous phosphorylation and import of cognate carbohydrates; its components play physiological roles through interaction with other regulatory proteins. Here, we performed a systematic analysis of the 16 genes encoding putative PTS components (2 enzyme I, 2 HPr, and 12 enzyme II components) in F. prausnitzii A2-165. We identified the general PTS components responsible for the PEP-dependent phosphotransfer reaction and the sugar-specific PTS components involved in the transport of two carbohydrates, N-acetylglucosamine and fructose, among five enzyme II complexes. We suggest that the dissection of the functional PTS in F. prausnitzii may help to understand how this species outcompetes other bacterial species in the human intestine.
Project description:The human intestinal microbiota plays an essential role in host health. Modifications in its composition and diversity could induce pathologies such as inflammatory bowel diseases (IBD). These diseases are characterized by an unbalanced intestinal microbiota (a process known as dysbiosis) and an altered immune response. Faecalibacterium prausnitzii, the most abundant commensal bacterium in the human intestinal microbiota of healthy individuals (representing more than 5% of the total bacterial population), has been reported to be lower in feces and mucosa-associated microbiota of IBD patients. In addition, we have shown that both F. prausnitzii and its culture supernatant (SN) have anti-inflammatory and protective effects in both acute and chronic colitis models. However, the host molecular mechanisms involved in these anti-inflammatory effects remain unknown. In order to address this issue, we performed DNA chip-based transcriptomic analyses in HT-29 human intestinal epithelial cells stimulated with TNF-a and exposed to F. prausnitzii SN or to BHI (growth medium for F prausnitzii).
Project description:To elucidate whether Faecalibacterium prausnitzii has effects on intestinal toxicity induced by immune checkpoint inhibitors, we performed RNA-seq analysis of colon tissues of mice receiving DSS, DSS+ICB and DSS+ICB+F. prausnitzii gavage to compare the gene expression profiles.