Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:Investigation of whole genome gene expression level changes in a Escherichia coli MG1655 K-12 ∆arcA mutant, compared to the wild-type strain. The mutations engineered into this strain produce a strain lacking the ArcA protein. The results are further described in the manuscript The response regulator ArcA uses a diverse binding site architechture to globally regulate carbon oxidation in E. coli
Project description:The project aims at elucidating the effects of carbon starvation on the qualitative and quantitative composition of the Escherichia coli HT115-derived SLE1 strain proteome as determined by the combination of label-free and metabolic labeling-based proteomics.
Project description:In Escherichia coli, Lon is an ATP-dependent protease which degrades misfolded proteins and certain rapidly-degraded regulatory proteins. Given that oxidatively damaged proteins are generally degraded rather than repaired, we anticipated that Lon deficient cells would exhibit decreased viability during aerobic, but not anaerobic, carbon starvation. We found that the opposite actually occurs. Wild-type and Lon deficient cells survived equally well under aerobic conditions, but Lon deficient cells died more rapidly than the wild-type under anaerobiosis. Microarray analysis revealed that genes of the Clp family of ATP-dependent proteases were induced during aerobic growth but not during anaerobic growth. Thus, Clp may compensate for loss of Lon when cells are in an oxygen containing atmosphere. Under anaerobic carbon starvation conditions, Lon must be active to support survival. Keywords: Other
Project description:Escherichia coli culture was subjected to two different types of nutritional scenarios, abundant carbon/ nitrogen sources and scarce carbon/nitrogen medium. Study revealed that scarce medium adapted culture were more tolerant to hydrogen peroxide than abundant medium.
Project description:Escherichia coli (E. coli) amine oxidase (ECAO) encoded by tynA gene has been one of the model enzymes to study the mechanism of oxidative deamination of amines to the corresponding aldehydes by amine oxidases. The biological roles of ECAO have been less addressed. Therefore we have constructed a gene deletion Escherichia coli K-12 strain, E. coli tynA-, and used the microarray technique to address its function by comparing the total RNA gene expression to the one of the wt. Our results suggest that tynA is a reserve gene for stringent environmental conditions and its gene product ECAO a growth advantage compared to other bacteria due to H2O2 production.
Project description:Escherichia coli, the common inhabitant of the mammalian intestine, exhibits considerable intraspecies genomic variation, which has been suggested to reflect adaptation to different ecological niches. Also, regulatory trade-offs, e.g., between catabolic versatility and stress protection, are thought to result in significant physiological differences between strains. For these reasons, the relevance of experimental observations made for “domesticated” E. coli strains with regard to the behaviour of this species in its natural environments is often questioned and frequently doubts are raised on the status of E. coli as a defined species. We therefore investigated the variability of important eco-physiological functions such as carbon substrate uptake and breakdown capabilities as well as stress defence mechanisms in the genomes of commensal and pathogenic E. coli strains. Furthermore, eco-physiological properties of environmental strains were compared to standard laboratory strain K-12 MG1655. Catabolic, stress protection, and carbon- and energy source transport operons showed a very low intraspecies variability in 57 commensal and pathogenic E. coli. Environmental isolates adapted to glucose-limited growth in a similar way as E. coli MG1655, namely by increasing their catabolic flexibility and by inducing high affinity substrate uptake systems. Our results indicate that the major eco-physiological properties are highly conserved in the natural population of E. coli. This questions the proposed dominant role of horizontal gene transfer for niche adaptation. Keywords: comparative genomic hybridisation