Project description:Cellular stress responses are frequently presumed to be more sensitive than traditional ecotoxicological life cycle endpoints such as survival and growth. Yet, the focus to reduce test duration and to generate more sensitive endpoints has caused transcriptomics studies to be performed at low doses during short exposures, separately and independently from traditional ecotoxicity tests, making comparisons with life cycle endpoints indirect. Therefore we aimed to directly compare the effects on growth, survival and gene expression of the non-biting midge Chironomus riparius. To this purpose, we analyzed simultaneously life cycle and transcriptomics responses of chironomid larvae exposed to four model toxicants. We observed that already at the lowest test concentrations many transcripts were significantly differentially expressed, while the life cycle endpoints of C. riparius were hardly affected. Analysis of the differentially expressed transcripts showed that at the lowest test concentrations substantial and biologically relevant cellular stress was induced and that many transcripts responded already maximally at these lowest test concentrations. The direct comparison between molecular en life cycle responses after fourteen days of exposure revealed that gene expression is more sensitive to toxicant exposure than life cycle endpoints, underlining the potential of transcriptomics for ecotoxicity testing and environmental risk assessment. Cellular stress responses are frequently presumed to be more sensitive than traditional ecotoxicological life cycle endpoints such as survival and growth. Yet, the focus to reduce test duration and to generate more sensitive endpoints has caused transcriptomics studies to be performed at low doses during short exposures, separately and independently from traditional ecotoxicity tests, making comparisons with life cycle endpoints indirect. Therefore we aimed to directly compare the effects on growth, survival and gene expression of the non-biting midge Chironomus riparius. To this purpose, we analyzed simultaneously life cycle and transcriptomics responses of chironomid larvae exposed to four model toxicants. We observed that already at the lowest test concentrations many transcripts were significantly differentially expressed, while the life cycle endpoints of C. riparius were hardly affected. Analysis of the differentially expressed transcripts showed that at the lowest test concentrations substantial and biologically relevant cellular stress was induced and that many transcripts responded already maximally at these lowest test concentrations. The direct comparison between molecular en life cycle responses after fourteen days of exposure revealed that gene expression is more sensitive to toxicant exposure than life cycle endpoints, underlining the potential of transcriptomics for ecotoxicity testing and environmental risk assessment. Four 14-day Chironomus riparius sediment toxicity tests were conducted, one with each toxicant. The surviving larvae were individually flash frozen in liquid nitrogen. For each toxicant we analyzed the gene expression of larvae exposed to low, intermediate and high concentrations. We also included a control and a solvent control. For each treatment we analyzed 10 replicates (individual larvae).
Project description:We investigated the impacts of transition metal oxide (TMO) lithium-ion battery cathode nanomaterial, lithium cobalt oxide (LCO), on gene expression in the larvae of a model sediment invertebrate Chironomus riparius.
Project description:Comparative expression analysis between two highly salt-tolerant wheat lines, their parental lines, and a salt-sensitive line. The Chinese Spring (CS) line is salt sensitive. AJDAj5 and PhI are the two parental lines (with Chinese Spring background), and both have some salt-tolerance. W4909 and W4910 are two lines derived from crossing AJDAj5 and PhI, and both are more salt tolerant than either parental line.
Project description:Low temperature exposure during early vegetative stages limits rice plant’s growth and development. Most genes previously related to cold tolerance in rice are from the japonica subspecies. To help clarify the mechanisms that regulate cold tolerance in young indica rice plants, comparative transcriptome analysis of 6 h cold-treated leaves from two genotypes, cold-tolerant and cold-sensitive, was performed. The cold-tolerant and cold-sensitive genotypes were previously characterized, and are sister lines (derived from the same crossing).
Project description:To detect salt-tolerance-related miRNAs, comparative analysis of miRNA expression profiles was performed between the salt-tolerant and -sensitive cotton cultivars in control and salt-stressed conditions (treated with 300 mM NaCl for 24 h) using microRNA microarray
Project description:To detect salt-tolerance-related miRNAs, comparative analysis of miRNA expression profiles was performed between the salt-tolerant and -sensitive cotton cultivars in control and salt-stressed conditions (treated with 300 mM NaCl for 24 h) using microRNA microarray Total RNA was extracted from (1) the seedling of salt-tolerant cotton cultivar in normal growth conditions, (2) the seedling of salt-tolerant cotton cultivar in salt-stressed growth conditions, (3) the seedling of salt-sensitive cotton cultivar in normal growth conditions, and (4) the seedling of salt-sensitive cotton cultivar in salt-stressed growth conditions. Then, the low-molecular-weight RNA (LMW-RNA) was isolated using the PEG solution precipitation method and used to hybridization.