Project description:Helicobacter pylori (H. pylori) is a human pathogen that infects almost half of the world’s population. Infection with H. pylori is frequently associated with chronic gastritis and can even lead to gastric and duodenal ulcers and gastric cancer. Although the persistent colonization of H. pylori and the development of H. pylori-associated gastritis remain poorly understood, it is believed that, in gastric mucosa, the modulated gastric epithelial cells (GECs) by H. pylori are key contributors. We used microarrays to detail the global programme of gene expression in Helicobacter pylori infected-gastric epithelial cell line AGS cells and identified up-regulated genes induced by Helicobacter pylori infection.
Project description:Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray in vitro culture cells and in vivo patients of the chronic abdominal complaint. In this study,the effects of H. pylori infection on host gene expression in the gastric antral mucosa of patients with chronic gastritis were examined.
Project description:Helicobacter pylori clinical isolates can establish themselves in gastric epithelial stem cells and this interaction may have implications for gastric tumorigenesis. Mouse gastric epithelial progenitor cells (mGEPs) and non-progenitor gastric epithelial cells (npGECs) were infected for 24hrs with Helicobacter pylori clinical isolates Kx1 and Kx2. Kx1 was isolated from a patient with chronic atrophic gastritis (ChAG) and Kx2 from the same patient 4 years later, when he progressed to gastric adenocarcinoma. Keywords: RNA Expression Array
Project description:In this study, a whole-genome CombiMatrix Custom oligonucleotide tiling microarray with 90000 probes covering six sequenced Helicobacter pylori(H. pylori) genomes was designed and utilized for comparative genomic profiling of eight unsequenced strains isolated from patients with different gastroduodenal diseases in Heilongjiang province of China. Since significant genomic variation were found among these strains, an additional 76 H. pylori stains with different clinical outcomes isolated from various provinces of China were further tested by PCR to demonstrate this distinction. We observed several highly variable regions among strains of gastritis, gastric ulceration and gastric cancer. They are involved in genes associated with bacterial type I, type II and type III R-M system as well as in a virB gene neighboring the well studied cag pathogenic island. Previous studies have reported the diverse genetic characterization of this pathogenic island, but it is conserved in the strains tested by microarray in this study. Moreover, a number of genes involved in the type IV secretion system related to DNA horizontal transfer between H. pylori strains were identified based on the comparative analysis of the strain specific genes. These findings may provide new insights for discovering biomarkers for prediction of gastric diseases.
Project description:Helicobacter pylori clinical isolates can establish themselves in gastric epithelial stem cells and this interaction may have implications for gastric tumorigenesis. Mouse gastric epithelial progenitor cells (mGEPs) were infected for 24hrs with Helicobacter pylori clinical isolates Kx1 and Kx2. Kx1 and Kx2 were also grown in cell media in the absence of cells. Kx1 was isolated from a patient with chronic atrophic gastritis (ChAG) and Kx2 from the same patient 4 years later, when he progressed to gastric adenocarcinoma. Keywords: RNA Expression Array
Project description:Helicobacter pylori are gram-negative bacteria that colonize the human stomach and are the major etiological factor in gastric carcinoma development. The aim of this work was to evaluate changes in gene expression in gastric cells induced by H. pylori.
Project description:Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray in vitro culture cells and in vivo patients of the chronic abdominal complaint. In this study,the effects of H. pylori infection on host gene expression in the gastric antral mucosa of patients with chronic gastritis were examined. The gastric antral mucosa was obtained from a total of 6 untreated patients undergoing gastroscopic and pathologic confirmation of chronic superficial gastritis. Three patients infected by H. pylori and 3 patients uninfected were used to cDNA microarray experiment.
Project description:Based on preliminary data demonstrating that macrophages are critical regulators of Helicobacter pylori colonization and gastric pathology in mice, we sought to investigate how macrophages may serve as bacterial reservoirs of intracellular H. pylori.
Project description:In this study, we treated the gastric cancer cell line AGS with PBS and Helicobacter pylori to perform RNA-seq analysis. A total of 18,308 different circRNA candidates were obtained in the experiment.Compared with the control, 101 significantly differentially expressed circRNAs were identified in the AGS cells infected with H. pylori, including 84 upregulated circRNAs and 17 downregulated circRNAs.Then, circMAN1A2 with the most significant expression difference was selected according to the sequencing results to study the epigenetic mechanism of H. pylori-induced gastric carcinogenesis.
Project description:Forkhead box (Fox) proteins constitute an evolutionarily conserved family of transcriptional regulators whose deregulations lead to tumorigenesis. However, their regulation and function in gastric cancer are unknown. Promoter hypermethylation occurs during Helicobacter pylori (H pylori)-induced gastritis, but whether the deregulated genes contribute to the multi-step gastric carcinogenesis remains unclear. FOXD3 was found to be hypermethylated in a mouse model of H pylori infection and possess tumor-suppressive functions in gastric cancer cell lines. In order to characterize the direct targets of FOXD3 that confer its actions, we performed ChIP-chip in N87 gastric cancer cell line which express low level of FOXD3 in the nuclei of a sub-population of cells. Promoter hypermethylation occurs during Helicobacter pylori (H pylori)-induced gastritis, but whether the deregulated genes contribute to the multi-step gastric carcinogenesis remains unclear. We used MethylCap-microarray to identify hypermethylated genes in a mouse model of H pylori infection.