Project description:This Project investigates the impact of elevated temperatures and relative humidity on the aging process of chia seeds (Salvia hispanica L.). The study employs proteomics to examine molecular responses to accelerated aging in two chia genotypes. The results underscore the importance of evaluating changes in proteins of aged seeds to gain insights into the biological mechanisms responsible for maintaining chia seed integrity during the aging process.
Project description:Salvia hispanica L. (chia) is a member of the mint family that is cultivated for its seeds. The majority of seed content in chia is comprised of omega fatty acids. Furthermore, chia seeds are also rich in fiber and minerals. The human health potential of chia seeds have driven studies of dietary effects, however there is little genetic or genomic studies available. In this study we obtained RNA from seeds, shoots, cotyledons, leaf primordia, nodes, racemes, and flower tissues from different developmental stages to generate an expression atlas for chia. RNA was sequenced on an Illumina Hiseq 2500. Sequence reads were assembled de novo to produce transcripts. Sequence reads were aligned to the chia transcriptome assembly to generate counts for each tissue type. Differentially expressed transcripts were determined for each tissue type.
Project description:Spider mites, including the two-spotted spider mite (Tetranychus urticae, TSSM) and the Banks grass mite (Oligonychus pratensis, BGM), are becoming increasingly important agricultural pests. The TSSM is an extreme generalist documented to feed on more than 1100 plant hosts. In contrast, the BGM is a grass specialist, with hosts including important cereal crops like maize, wheat, sorghum and barley. Historically, studies of plant-herbivore interactions have focused largely on insects. However, far less is known about plant responses to spider mite herbivores, especially in grasses, and whether responses differ between generalists and specialists. To identify plant defense pathways responding to spider mites, we collected time course RNA-seq data from barley (Hordeum vulgare L.) infested with TSSMs and BGMs. Additionally, and as a comparison to the physical damage caused by spider mite feeding, a wounding treatment was also included. The experiment was performed with four biological replicates across each of the following (28 samples in total): no infestation (C, control), 2hr after wounding (W2), 24hr after wounding (W24), 2hr after TSSM infestation (T2), 24hr after TSSM infestation (T24), 2hr after BGM infestation (B2), and 24hr after BGM infestation (B24).
Project description:The two-spotted spider mite, Tetranychus urticae, is one of the most significant mite pests in agriculture that can feed on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we described tomato transcriptional responses to spider mite feeding and compared them to Arabidopsis in order to determine conserved and divergent responses to this pest. 2,133 differentially expressed genes (DEGs) were detected at 1, 3, 6, 12 or 24 hours post spider mite infestation (hpi) relative to non-infested control plants. Based on Biological Process Gene Ontology annotations, improved in the course of our analysis, DEGs were grouped in 60 significantly enriched gene sets that highlighted perception of the spider mite attack (1 hpi), metabolic reprogramming (3-6 hpi), and establishment and maintenance of the defense responses (6-24 hpi). We used microarray to assess global gene expression in Solanum lycopersicum cv. Heinz 1706 upon Tetranychus urticae attack. 1 month old tomato plants were subjected to Tetranychus urticae attack through application of 100 adult mites on a terminal leaflet of leaf 3 for various periods of time (timecourse scenario) or hundreds of mites for 1 hour (feeding site scenario).