Project description:Sake is a traditional Japanese alcoholic beverage prepared by multiple parallel fermentation of rice. The fermentation process of yamahai-ginjo-shikomi sake is mainly performed by three microbes, Aspergillus oryzae, Saccharomyces cerevisiae, and Lactobacilli; the levels of various metabolites fluctuate during the fermentation of sake. For evaluation of the fermentation process, we monitored the concentration of moderate-sized molecules (m/z: 200-1000) dynamically changed during the fermentation process of yamahai-ginjo-shikomi Japanese sake. This analysis revealed that six compounds were the main factors with characteristic differences in the fermentation process. Among the six compounds, four were leucine- or isoleucine-containing peptides and the remaining two were predicted to be small molecules. Quantification of these compounds revealed that their quantities changed during the month of fermentation process. Our metabolomic approach revealed the dynamic changes observed in moderate-sized molecules during the fermentation process of sake, and the factors found in this analysis will be candidate molecules that indicate the progress of yamahai-ginjo-shikomi sake fermentation.
Project description:During an incompatible or compatible interaction between rice (Oryza sativa) and the Asian rice gall midge (Orseolia oryzae), a lot of genetic reprogamming occurs in the plant host We used microarray to know the changes occuring in the resistant host (indica rice variety RP2068-18-3-5) when challenged by avirulent biotype of gall midge (GMB 1). During this incompatible interaction the resistance in the host is manifested by a hypersenstive response. Using microarray data, we identified distinct classes of up- and down-regulated genes during this process.
Project description:Magnaporthe oryzae causes rice blast, the most devastating foliar fungal disease of cultivated rice. During disease development the fungus simultaneously maintains both biotrophic and necrotrophic growth corresponding to a hemi-biotrophic life style. The ability of M. oryzae to also colonize roots and subsequently develop blast symptoms on aerial tissue has been recognized. The fungal root infection strategy and the respective host responses are currently unknown. Global temporal expression analysis suggested a purely biotrophic infection process reflected by the rapid induction of defense response-associated genes at the early stage of root invasion and subsequent repression coinciding with the onset of intracellular fungal growth. The same group of down-regulated defense genes was increasingly induced upon leaf infection by M. oryzae where symptom development occurs shortly post tissue penetration. Our molecular analysis therefore demonstrates the existence of fundamentally different tissue-specific fungal infection strategies and provides the basis for enhancing our understanding of the pathogen life style. Experiment Overall Design: We investigated global transcriptome response overtime of Mock- and M. oryzae inoculated rice root tissue in vitro. Two independant replicates were perfomed for each treatments and samples were collected at 2, 4 and 6 days post-inoculation.
Project description:Beer brewing is a well-known process that still faces great challenges, such as the total consumption of sugars present in the fermentation media. Lager-style beer, major worldwide beer type, is elaborated by Saccharomyces pastorianus (Sp) yeast which must ferment high maltotriose content worts, but its consumption represents a notable problem, especially among Sp strains belonging to group I. Factors like fermentation conditions, presence of maltotriose transporters, transporter copy number variation, and genetic regulation variations contribute to this issue. We assess the factors affecting fermentation in two Sp yeast strains: SpIB1, with limited maltotriose uptake, and SpIB2, known for efficient maltotriose transport. Here, SpIB2 transported significantly more maltose (28%) and maltotriose (32%) compared to SpIB1. Furthermore, SpIB2 expressed all MAL transporters (ScMALx1, SeMALx1, ScAGT1, SeAGT1, MTT1, and MPHx) on the first day of fermentation, while SpIB1 only exhibited ScMalx1, ScAGT1, and MPH2/3 genes. Some SpIB2 transporters had polymorphic transmembrane domains (TMD) resembling MTT1, accompanied by higher expression of these transporters and its positive regulator genes like MAL63. These findings suggest that, in addition of the factors mentioned above, positive regulators of Mal transporters contribute significatively to phenotypic diversity in maltose and maltotriose consumption among the studied lager yeast strains.
Project description:Magnaporthe oryzae causes rice blast, the most devastating foliar fungal disease of cultivated rice. During disease development the fungus simultaneously maintains both biotrophic and necrotrophic growth corresponding to a hemi-biotrophic life style. The ability of M. oryzae to also colonize roots and subsequently develop blast symptoms on aerial tissue has been recognized. The fungal root infection strategy and the respective host responses are currently unknown. Global temporal expression analysis suggested a purely biotrophic infection process reflected by the rapid induction of defense response-associated genes at the early stage of root invasion and subsequent repression coinciding with the onset of intracellular fungal growth. The same group of down-regulated defense genes was increasingly induced upon leaf infection by M. oryzae where symptom development occurs shortly post tissue penetration. Our molecular analysis therefore demonstrates the existence of fundamentally different tissue-specific fungal infection strategies and provides the basis for enhancing our understanding of the pathogen life style.