Project description:Purpose:MicroRNAs (miRNAs) are members of a rapidly growing class of small endogenous non-coding RNAs that play crucial roles in post-transcriptional regulator of gene expression in many biological processes. Feline Panleukopenia Virus (FPV) is a highly infectious pathogen that causes severe disease in pets, economically important animals and wildlife in worldwide. However, the molecular mechanisms underlying the pathogenicity of FPV have not been completely clear. To study the involvement of miRNAs in the FPV infection process, miRNAs expression profiles were identified via deep sequencing in the feline kidney cell line (F81) infected and uninfected with FPV. Methods:miRNA-sequencing analysis was performed on an Illumina Hiseq 2500 (LC Sciences, USA) following the vendor's recommended protocol Results:As a result, 673 known miRNAs belonging to 210 families and 278 novel miRNAs were identified. Then we found 57 significantly differential expression miRNAs by comparing the results between uninfected and FPV-infected groups. Furthermore, stem-loop qRT-PCR was applied to validate and profile the expression of the randomly selected miRNAs; the results were consistent with those by deep sequencing. Furthermore, the potential target genes were predicted. The target genes of differential expression miRNAs were analyzed by GO and KEGG pathway. Conclusions:The identification of miRNAs in feline kidney cell line before and after infection with Feline Panleukopenia Virus will provide new information and enhance our understanding of the functions of miRNAs in regulating biological processes.
Project description:The purpose of this study was to characterize the transcriptomic alterations accompanying the inflammation involved in feline chronic gingivostomatitis (FCGS). Towards this goal next-generation sequencing (NGS)-based gene expression profiling (RNA-Sequencing; RNA-Seq) was performed on matched pairs of FCGS diseased and healthy tissues obtained from three feline subjects.
Project description:This study looks at the effect of dietary manipulation on the development of hepatic steatosis and changes in hepatic gene expression in a feline model. We used microarray analysis to examine changes in hepatic gene transcription in response to Trans fat, High Fructose Corn Syrup (HFCS) and/or Monosodium Glutamate (MSG) in the domestic cat. The use of human Affymetrix arrays for the study of feline gene expression has previously been validated by Dowling and Bienzle, 2005, Journal of General Virology. 86(Pt 8), 2239-48 (PMID 16033971).
Project description:This study looks at the effect of dietary manipulation on the development of hepatic steatosis and changes in hepatic gene expression in a feline model. We used microarray analysis to examine changes in hepatic gene transcription in response to Trans fat, High Fructose Corn Syrup (HFCS) and/or Monosodium Glutamate (MSG) in the domestic cat. The use of human Affymetrix arrays for the study of feline gene expression has previously been validated by Dowling and Bienzle, 2005, Journal of General Virology. 86(Pt 8), 2239-48 (PMID 16033971). Our study animals were bred from female Felis catus previously placed on one of 4 different dietary regimens for a period of 3 weeks prior to mating. The four dietary regimens used in this study were: [1] Standard Chow Control feline diet (Test Diet Purina catalog #5003); [2] MSG diet consisting of Control diet with 1.125% added Monosodium Glutamate (Diet A: Test Diet Purina catalog #5C1J); [3] Trans-fat/HFCS diet, containing 8.6% Trans fat and 24% HFCS (Diet B: Test Diet Purina catalog #5B4K); and [4] Trans-fat/HFCS and MSG diet, containing 8.6% Trans fat, 24% HFCS and 1.125% MSG (Diet C: Test Diet Purina catalog #5C1H). Following mating, the 4 groups of dams were maintained on their respective diets throughout the gestation and nursing period. Male offspring used in the following experiments were weaned onto the same diets and maintained on their respective dietary regimens until they reached 9 months of age. Hepatic tissues (4-5 per diet group) were used for RNA extraction and hybridization on Affymetrix microarrays.