Project description:Background: Treponema denticola is strongly associated with the development of periodontal disease. Both synergistic and antagonistic effects are observed among bacterial species in the process of biofilm formation. Bacteriocin-related genes have not yet been fully characterized in periodontopathic bacteria. The aim of this study was to detect and characterize bacteriocin-associated proteins in T. denticola. Methods: The whole genome sequence of T. denticola ATCC 35405 was screened with a Streptococcus mutans bacteriocin immunity protein (ImmA/Bip) sequence. The prevalence of homologous genes in T. denticola strains was then investigated by Southern blotting. Expression of the genes was evaluated by qRT-PCR. Results: In the genome sequence of T. denticola, an amino acid sequence coded by open reading frame TDE_0719 showed 26% identity with the S. mutans ImmA. Furthermore, two protein sequences coded by TDE_0425 and TDE_2431 in T. denticola ATCC 35405 showed ~40% identity with that coded by TDE0719. Therefore, TDE_0425, TDE_0719, and TDE_2431 were designated as tepA1, A2, and A3, respectively. Open reading frames showing similarity to the HlyD family of secretion proteins were detected downstream of tepA1, A2, and A3. They were designated as tepB1, B2, and B3, respectively. A gene harboring a bacteriocin-like signal sequence was detected upstream of tepA1. The prevalence of tepA1 and A2 differed among Treponema species. Susceptibility to chloramphenicol and ofloxiacin was slightly decreased in a tepA2 mutant while that to kanamycin was increased. Expression of tepA3-B3 was increased in the tepA2 mutant. Conclusion: These results indicate that T. denticola ATCC 35405 has three potential bacteriocin export proteins and that the presence of these genes differs among the Treponema strains. These proteins may be involved in resistance to chloramphenicol.
Project description:Small distortions in transcriptional networks might lead to drastic phenotypical changes, especially in cellular developmental programs such as competence for natural transformation. Here, we report a pervasive circuitry rewiring for competence and predation interplay in commensal streptococci. Canonically, in model species of streptococci such as Streptococcus pneumoniae and Streptococcus mutans, the pheromone-based two-component system BlpRH is a central node that orchestrates the production of antimicrobial compounds (bacteriocins) and incorporates signal from the competence activation cascade. However, the human commensal Streptococcus salivarius does not contain a functional BlpRH pair and in this species, the competence signaling system ComRS directly couples bacteriocin production and competence commitment. This network shortcut might account for an optimal reaction against microbial competitors and could explain the high prevalence of S. salivarius in the human digestive tract. Moreover, the broad spectrum of bacteriocin activity against pathogenic bacteria showcases the commensal and genetically tractable S. salivarius species as a user-friendly model for natural transformation and bacterial predation.
2018-01-10 | GSE100416 | GEO
Project description:Whole genome of bacteriocin-producing LAB strain
Project description:Functional genomic analyses of exopolysaccharide-producing Streptococcus thermophilus ASCC 1275 in response to shifts in milk fermentation conditions
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:We report here the complete genome sequence of Streptococcus ratti strain JH145. Streptococcus ratti is a cariogenic species of mutans streptococcus that has been isolated from rat and human teeth. The strain JH145, derived from strain BHT-2, is interesting for oral health because it does not produce cariogenic lactic acid but shows robust biofilm production.
Project description:Differential gene expression was determined between wild type Streptococcus mutan and a yidC1 or yidC2 mutant using whole transcriptome RNA sequence. A significantly greater number of genes were differentially expressed (DE) in the yidC2 mutant (320 DE genes) compared to wildtype, while the yidC1 mutant had only 21 DE genes when compared to wildtype.