Project description:MafF-/-: MafG+/+: MafK-/- mice are viable, while MafF-/-: MafG-/-: MafK-/- mice are embryonic lethal. To get an insight into the cause of the lethality of small Maf triple knockout mice, transcriptome analysis was performed using whole embyos of MafF-/-: MafG-/-: MafK-/- at E10.5 and those of MafF-/-: MafG+/+: MafK-/- at E9.5 or E10.5. Because MafF-/-: MafG-/-: MafK-/- embryos exhibit growth retardation, the gene expression profile of MafF-/-: MafG-/-: MafK-/- embryos at E10.5 was compared with that of MafF-/-: MafG+/+: MafK-/- embyos at E9.5. The gene expression profile of MafF-/-: MafG+/+: MafK-/- embryos at E10.5 was also examined as an alternative control.
Project description:MafF-/-: MafG+/+: MafK-/- mice are viable, while MafF-/-: MafG-/-: MafK-/- mice are embryonic lethal. To get an insight into the cause of the lethality of small Maf triple knockout mice, transcriptome analysis was performed using whole embyos of MafF-/-: MafG-/-: MafK-/- at E10.5 and those of MafF-/-: MafG+/+: MafK-/- at E9.5 or E10.5. Because MafF-/-: MafG-/-: MafK-/- embryos exhibit growth retardation, the gene expression profile of MafF-/-: MafG-/-: MafK-/- embryos at E10.5 was compared with that of MafF-/-: MafG+/+: MafK-/- embyos at E9.5. The gene expression profile of MafF-/-: MafG+/+: MafK-/- embryos at E10.5 was also examined as an alternative control. Total RNA was prepared from pooled three embryos for each sample.
Project description:Using RNA-sequencing and ChIP-sequencing, we identified direct target genes of the transcription factor MAFF in MDA-MB-231 under normoxia and hypoxia.
Project description:HuH7 cells stably transfected with siRNA against TFPI2, MAFB, or MAFF, as well as non-targeting control shRNA were established. We showed that all-trans-retinoic acid (ATRA) induces TFPI2 expression through RARalpha, while MAFB and MAFF regulate this effect positively and negatively, respectively. To investigate global regulation of ATRA-induced transcription, this microarray analysis was performed with the shRNA-expressing cells following ATRA treatment.