Project description:Our previous report revealed that protein phosphatase 2A (PP2A), complexed with the B55delta-type regulatory subunit (i.e. Cdc55p), is solely responsible for the outstanding glycolytic activity of sake yeast strains (Watanabe et al., Appl. Environ. Microbiol. 85, e02083-18 (2019). However, how PP2A mediates yeast alcoholic fermentation remains elusive. Thus, RNA-seq analysis of S. cerevisiae cdc55-delta cells at the initial fermentation stage was performed to identify the downstream effector targeting the glycolytic control.
Project description:Transcriptomic study to characterize the interaction of the Penicillium expansum antifungal protein PeAfpA with the the model yeast Saccharomyces cerevisiae. For this, the transcriptome of S. cerevisiae BY4741 strain was compared among samples treated with increasing concentrations of PeAfpA.
Project description:The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control. With prevalent hyper-activation of the mTOR pathway in human cancers, novel strategies to enhance TOR pathway inhibition are highly desirable. We used a yeast-based high-throughput chemical genetic screen to identify small-molecule enhancers of rapamycin (SMERs) and used whole genome expression analysis to identify their mechanisms of action.
Project description:To understand the extent that Heat shock protein 90 (Hsp90) regulated its target proteins at the transcription level, transcriptomic change was profiled in yeast cells upon Hsp90 compromising. We genetically modified the R1158 strain (resulting genotype of mutant strain: TETp-HSC82 hsp82Δ arg4Δ lys5Δ car2Δ::URA3) and then reduced the Hsp90 amount with doxycycline treatment. Fold change of mRNA from untreated to treated cells indicated the transcriptomic change. Totally, we identified 1104 genes mis-regulated with a fold change of no less than 1.5 (P <0.05) upon Hsp90 compromising.