Project description:The aim of the study was to carry out a CGH study utilizing a set of 39 diverse Bacillus isolates. Thirty four B. cereus and five B. anthracis strains and isolates were chosen so as to represent different lineages based on previous characterizations, including MLEE and MLST (Helgason, Okstad et al. 2000; Helgason, Tourasse et al. 2004). They represent the spectrum of B. cereus phenotypic diversity by including soil, dairy and periodontal isolates in addition to virulent B. anthracis strains.
Project description:AtxA, the master virulence regulator of Bacillus anthracis, regulates the expression of three toxins that are required for the pathogenicity of Bacillus anthracis. Recent transcriptome analyses also showed that AtxA affects a large number of genes on both chromosome and plasmid, suggesting its role as a global regulator. Its mechanism of gene regulation nor binding target in vivo was, however, not well understood. In this work, we conducted ChIP-seq for cataloging binding sites of AtxA in vivo and Cappable-seq for catalogging the transcription start sites on the B. anthracis genome. For detected regulons, single knockout strains were constructed and RNA-seq was conducted for each strain.
Project description:The spore forming pathogen Bacillus anthracis is the etiologic agent of anthrax in humans and animals. It cycles through infected hosts as vegetative cells and is eventually introduced into the environment where it generates an endospore resistant to many harsh conditions. The endospores are subsequently ingested by the next host to begin the next cycle. Outbreaks of anthrax occur regularly worldwide in wildlife and livestock, and the potential for human infection exists whenever humans encounter infected animals. It is also possible to encounter intentional releases of anthrax spores, as was the case in October 2001. Consequently, it is important to be able to rapidly establish the provenance of infectious strains of B. anthracis. Here, we compare protein expression in seven low-passage wild isolates and four laboratory strains of B. anthracis grown under identical conditions using LC-MS/MS proteomic analysis. Of the 1,023 total identified proteins, 96 had significant abundance differences between wild and laboratory strains. Of those, 28 proteins directly related to sporulation were upregulated in wild isolates, with expression driven by Spo0A, CodY, and AbrB/ScoC. In addition, we observed evidence of changes in cell division and fatty acid biosynthesis between the two classes of strains, despite being grown under identical experimental conditions. These results suggest wild B. anthracis cells are more highly tuned to sporulate than their laboratory cousins, and this difference should be exploited as a method to differentiate between laboratory adapted cultures and low passage wild strains isolated during an anthrax outbreak. This knowledge should distinguish between intentional releases and exposure to strains in nature providing a basis for the type of response by public health officials and investigators.
Project description:Investigation of whole genome expression level changes in Bacillus anthracis Sterne deltaClpX mutant compared to the wild-type strain after growth in nutrient rich media. The deltaClpX mutant used in this study is described in McGillivray et al. 2009. ClpX Protease Contributes to Antimicrobial Peptide Resistance and Virulence Phenotypes of Bacillus anthracis. Journal of Innate Immunity 1(5): 494-506.
Project description:The High Temperature Requirement (HtrA) chaperone/protease is involved in the stress-response of the anthrax-causing pathogen Bacillus anthracis. Resilience to oxidative stress is essential for manifestation of B. anthracis pathogenicity. We submitt transcriptome data sets detailing global gene expression in B. anthracis wild-type and htrA-disrupted strains following H2O2-induced oxidative stress.
Project description:5-methylcytosine is one of the major epigenetic modifications of DNA in living organisms. In bacteria, some species possess DNA methyltransferases that produce the cytosine modification in both strands or either strand of its target sequence. The purpose of this study is to characterize BatIM, the orphan cytosine methyltransferase coded on a prophage region of Bacillus anthracis.