Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host's mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:Intracerebral hemorrhage (ICH) induces alterations in the gut microbiota composition, significantly impacting neuroinflammation post-ICH. However, the impact of gut microbiota absence on neuroinflammation following ICH-induced brain injury remain unexplored. Here, we observed that the gut microbiota absence was associated with reduced neuroinflammation, alleviated neurological dysfunction, and mitigated gut barrier dysfunction post-ICH. In contrast, recolonization of microbiota from ICH-induced SPF mice by transplantation of fecal microbiota (FMT) exacerbated brain injury and gut impairment post-ICH. Additionally, microglia with transcriptional changes mediated the protective effects of gut microbiota absence on brain injury, with Apoe emerging as a hub gene. Subsequently, Apoe deficiency in peri-hematomal microglia was associated with improved brain injury. Finally, we revealed that gut microbiota influence brain injury and gut impairment via gut-derived short-chain fatty acids (SCFA).
Project description:Gut microbiota and their metabolites influence host gene expression and physiological status through diverse mechanisms. Here we investigate how gut microbiota and their metabolites impact host′s mRNA m6A epitranscriptome in various antibiotic-induced microbiota dysbiosis models. With multi-omics analysis, we find that the imbalance of gut microbiota can rewire host mRNA m6A epitranscriptomic profiles in brain, liver and intestine. We further explore the underlying mechanisms regulating host mRNA m6A methylome by depleting the microbiota with ampicillin. Metabolomic profiling shows that cholic acids are the main down-regulated metabolites with Firmicutes as the most significantly reduced genus in ampicillin-treated mice comparing to untreated mice. Fecal microbiota transplantations in germ-free mice and metabolites supplementations in cells verify that cholic acids are associated with host mRNA m6A epitranscriptomic rewiring. Collectively, this study employs an integrative multi-omics analysis to demonstrate the impact of gut microbiota dysbiosis on host mRNA m6A epitranscriptomic landscape via cholic acid metabolism.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:This is a prospective study evaluating the relation between the gut microbiota composition, intestinal healing after colorectal surgery and colorectal cancer behavior.
Our hypothesis is that the gut microbiota composition could predict poor intestinal healing in colorectal surgery, and that the gut microbiota might have an impact on colorectal cancer clinical behavior and may predict disease outcomes.