Project description:Tobacco mild green mosaic virus (TMGMV) isolates from different plant families show no evidence of differential adaptation to their host of origin
Project description:Recently, it was described that mammalian cells are able to eliminate those with relative lower Myc levels in the epiblast through cell competition. We have described that cardiomyocytes during heart development are also able to complete eliminating cells with lower Myc levels. We have also shown that adult cardiomyocytes respond in the same way over long periods of time when cell competition is induced by overexpressing Myc in a mosaic fashion. We therefore have developed an RNASeq assay to further understand the mechanism of elimination of WT cells and the effect of mild Myc overexpression in cardiomyocytes. Myc overexpression in a mosaic fashion in adult cardiomyocytes, 2 hearts were analyzed and two wild type littermates were used as controls
Project description:Recently, it was described that mammalian cells are able to eliminate those with relative lower Myc levels in the epiblast through cell competition. We have described that cardiomyocytes during heart development are also able to complete eliminating cells with lower Myc levels. We have also shown that adult cardiomyocytes respond in the same way over long periods of time when cell competition is induced by overexpressing Myc in a mosaic fashion. We therefore have developed an RNASeq assay to further understand the mechanism of elimination of WT cells and the effect of mild Myc overexpression in cardiomyocytes.
Project description:Tuberose (Polianthes tuberosa) is an ornamental flowering crop of the Amaryllidaceae family. Tuberose mild mosaic virus (TuMMV) and tuberose mild mottle virus (TuMMoV), members of the genus Potyvirus, are ubiquitously distributed in most tuberose growing countries worldwide with low biological incidence. Here, we report the first coding-complete genomic RNA of TuMMV and TuMMoV obtained through high-throughput sequencing (HTS) and further, the presence of both the viruses were confirmed using virus-specific primers in RT-PCR assays. Excluding the poly (A) tail, the coding-complete genomic RNA of TuMMV and TuMMoV was 9485 and 9462 nucleotides (nts) in length, respectively, and contained a single large open reading frame (ORF). Polyprotein encoded by both the viral genomes contained nine putative cleavage sites. BLASTn analysis of TuMMV and TuMMoV genomes showed 72.40-76.80% and 67.95-77% nucleotide sequence similarities, respectively, with the existing potyviral sequences. Phylogenetic analysis based on genome sequences showed that TuMMV and TuMMoV clustered in a distinct clade to other potyviruses. Further studies are required to understand the mechanism of symptom development, distribution, genetic variability, and their possible threat to tuberose production in India.