Project description:Complex microbial metabolism is key to taste formation in high-quality fish sauce during fermentation. To guide quality supervising and targeted regulation, we analyzed the function of microbial flora during fermentation based on a previous metagenomic database. Most of the identified genes involved in metabolic functions showed an upward trend in abundance during fermentation. In total, 571 proteins extracted from fish sauce at different fermentation stages were identified. The proteins were mainly derived from Halanaerobium, Psychrobacter, Photobacterium, and Tetragenococcus. Functional annotation showed 15 pathways related to amino acid metabolism, including alanine, aspartate, glutamate, and histidine metabolism; lysine degradation; and arginine biosynthesis.
2022-05-20 | PXD031089 | Pride
Project description:Study on microbial community in soy sauce Koji fermentation
| PRJNA941183 | ENA
Project description:microorganism of fish sauce: Antarctic Krill fish sauce
Project description:Sirtuin is considered to play a significant role in the growth phase-dependent gene expression. In this study, we characterized sirtuin in the white koji fungus, Aspergillus kawachii, to examine their role on regulation of amylolytic enzymes and citric acid productions during the solid-state culture (koji). Characterization of rice-koji made using five putative sirtuin gene disruptants indicated that they are involved in amylolytic activity and acidity of rice koji; especially the sirD disruptant showed lower levels of α-amylase activity and citric acid production per mycelial weight in the koji compared the control strain. In addition, the sirD disruptant also showed a change in mycelial pigmentation, higher sensitivity to cell wall biogenesis inhibitor such as calcofluor white and Congo red, and reduced conidia formation, indicating that SirD is required for secondary metabolism, cell wall integrity, and conidial development. The cap analysis gene expression (CAGE) indicated that the transcriptional changes related to the characteristic phenotype of the sirD disruptant (e.g., a reduced transcript level of acid-stable α-amylase gene and a citric acid exporter) in rice koji. These results indicated that SirD has a significant role on the global transcriptional regulation including productions of α-amylase and citric acid in A. kawachii during the solid-state fermentation process.
2019-06-15 | GSE132729 | GEO
Project description:Bacterial dynamics of fish sauce
Project description:We investigated the effects of jeotgal (fermented fish sauce) on kimchi fermentation, with or without saeu-jeot and myeolchi-jeot. Bacterial community analysis showed that Leuconostoc, Weissella, Lactobacillus, and Tetragenococcus were the dominant genera; however, their succession depended on the presence of jeotgal. Leuconostoc gasicomitatum was the dominant species in kimchi without jeotgal, whereas Weissella koreensis and Lactobacillus sakei were the dominant species in kimchi with myeolchi-jeot and saeu-jeot, respectively. Metabolite analysis, using 1H NMR, showed that the amounts of amino acids and gamma-aminobutyric acid (GABA) were higher in kimchi with jeotgal. Increases in acetate, lactate, and mannitol contents depended on fructose consumption and were more rapid in kimchi with jeotgal. Moreover, the consumption of various amino acids affected the increase in kimchi LAB. Thus, the role of jeotgal in kimchi fermentation was related to enhancement of taste, the amino acid source, and the increases in levels of functional metabolites.
Project description:metagenomic and metaproteomic analyses were used to identify the changes in the dominant flora and related enzymes in amino acid synthesis and metabolism during Cantonese soy sauce fermentation.