Project description:Fire disturbances are becoming more common, more intense, and further-reaching across the globe, with consequences for ecosystem functioning. Importantly, fire can have strong effects on the soil microbiome, including community and functional changes after fire, but surprisingly little is known regarding the role of soil fire legacy in shaping responses to recent fire. To address this gap, we conducted a manipulative field experiment administering fire across 32 soils with varying fire legacies, including combinations of 1-7 historic fires and 1-33 years since most recent fire. We analyzed soil metatranscriptomes, determining for the first time how fire and fire legacy interactively affect metabolically-active soil taxa, the microbial regulation of important carbon (C), nitrogen (N) and phosphorus (P) cycling, expression of carbohydrate-cycling enzyme pathways, and functional gene co-expression networks. Experimental fire strongly downregulated fungal activity while upregulating many bacterial and archaeal phyla. Further, fire decreased soil capacity for microbial C and N cycling and P transport, and drastically rewired functional gene co-expression. Perhaps most importantly, we highlight a novel role of soil fire legacy in regulation of microbial C, N, and P responses to recent fire. We observed a greater number of functional genes responsive to the interactive effects of fire and fire legacy than those affected solely by recent fire, indicating that many functional genes respond to fire only under certain fire legacy contexts. Therefore, without incorporating fire legacy of soils, studies will miss important ways that fire shapes microbial roles in ecosystem functioning. Finally, we showed that fire caused significant downregulation of carbon metabolism and nutrient cycling genes in microbiomes under abnormal soil fire histories, producing a novel warning for the future: human manipulation of fire legacies, either indirectly through global change-induced fire intensification or directly through fire suppression, can negatively impact soil microbiome functional responses to new fires.
Project description:Reforestation is effective in restoring ecosystem functions and enhancing ecosystem services of degraded land. The three most commonly employed reforestation methods of natural reforestation, artificial reforestation with native Masson pine (Pinus massoniana Lamb.), and introduced slash pine (Pinus elliottii Engelm.) plantations were equally successful in biomass yield in southern China. However, it is not known if soil ecosystem functions, such as nitrogen (N) cycling, are also successfully restored. Here, we employed a functional microarray to illustrate soil N cycling. The composition and interactions of N-cycling genes in soils varied significantly with reforestation method. Natural reforestation had more superior organization of N-cycling genes, and higher functional potential (abundance of ammonification, denitrification, assimilatory, and dissimilatory nitrate reduction to ammonium genes) in soils, providing molecular insight into the effects of reforestation.
Project description:A comparision of soil microbial functional genes of three types of subtropical broad-leaved forests Microbial functional structure was significantly different among SBFs (P < 0.05). Compared to the DBF and the EBF, the MBF had higher alpha-diversity of functional genes but lower beta-diversity, and showed more complex functional gene networks.
Project description:Leishmania braziliensis infection results in inflammation and skin injury, with highly variable and unpredictable clinical outcomes. Here, we investigated the potential impact of microbiota on infection-induced inflammatory responses and disease resolution by conducting an integrated analysis of the skin microbiome and host transcriptome on a cohort of 62 L. braziliensis-infected patients. We found that overall bacterial burden and microbiome configurations dominated with Staphylococcus spp. were associated with delayed healing and enhanced inflammatory responses, especially by IL-1 family members. Dual RNA-seq of human lesions revealed that high lesional S. aureus transcript abundance was associated with delayed healing and increased expression of IL-1β. This cytokine was critical for modulating disease outcome in L. braziliensis-infected mice colonized with S. aureus, as its neutralization reduced pathology and inflammation. These results implicate the microbiome in cutaneous leishmaniasis disease outcomes in humans and suggest host-directed therapies to mitigate the inflammatory consequences.