Project description:We compared the gene methylation profile of 26 breast cancer cell lines to identify variations associated with different phenotypes and molecular subtype. The panel includes 13 estrogen receptor negative (ER-) and 13 ER+ cell lines. Four of the ER- cell lines and 5 of the ER+ cell lines are HER2 positive.
Project description:We compared the gene expression profile of 26 breast cancer cell lines to identify variations associated with different phenotypes and molecular subtype. The panel includes 13 estrogen receptor negative (ER-) and 13 ER+ cell lines. Four of the ER- cell lines and 5 of the ER+ cell lines are HER2 positive.
Project description:We compared the gene methylation profile of 26 breast cancer cell lines to identify variations associated with different phenotypes and molecular subtype. The panel includes 13 estrogen receptor negative (ER-) and 13 ER+ cell lines. Four of the ER- cell lines and 5 of the ER+ cell lines are HER2 positive. Bisulphite converted DNA from the 26 samples was hybridised to the Illumina Infinium Human Methylation450 Beadchip.
Project description:We compared the gene expression profile of 26 breast cancer cell lines to identify variations associated with different phenotypes and molecular subtype. The panel includes 13 estrogen receptor negative (ER-) and 13 ER+ cell lines. Four of the ER- cell lines and 5 of the ER+ cell lines are HER2 positive. We have used 2-color gene expression arrays for two separate studies. The one described here compares the intensities of one color channel across 26 cell lines, as normalized signal intensities. The second color channel is not analyzed here and will be used in a separate study.
Project description:RNA-seq was performed on breast cancer cell lines and primary tumors RNA-seq was performed on 28 breast cancer cell lines, 42 Triple Negative Breast Cancer (TNBC) primary tumors, and 42 Estrogen Receptor Positive (ER+) and HER2 Negative Breast Cancer primary tumors, 30 uninovlved breast tissue samples that were adjacent to ER+ primary tumors, 5 breast tissue samples from reduction mammoplasty procedures performed on patients with no known cancer, and 21 uninvolved breast tissue samples that were adjacent to TNBC primary tumors.
Project description:Hormones and growth factors accelerate cell proliferation of breast cancer cells, and these molecules are well investigated targets for drug development and application. The mechanisms of cell proliferation of breast cancers lacking estrogen receptor (ER) and HER2 have not been fully understood. The purpose of the present study is to find genes that are differentially expressed in breast cancers and that might significantly contribute to cell proliferation in these cancers. Forty tumor samples, consisting of ten each of immunohistochemically ER(+)/HER2(-), ER(+)/HER2(+), ER(-)/HER2(+), and ER(-)/HER2(-) cancer were analyzed using oligonucleotide microarrays. Both genes and tumor samples were subjected to hierarchical clustering. ER(+)/HER2(-) breast cancers and ER(-)/HER2(-) cancers tended to form a tumor cluster, but HER2 positive breast cancers were split into different tumor clusters. Significant differential expression between IHC-ER(-)/HER2(-) and other tumors was defined as having an expression level at least 2-fold higher or 2-fold lower, and analyzed by multi-step two-way ANOVA. Genes overexpressed differently in IHC-ER(-)/HER2(-) breast cancers compared to other all three types were 8 genes (FABP7, GABRP, GAL, CXCL13, CDC42EP4, C2F, FOXM1, CSDA), and underexpressed genes were nine including ITGB5, KIAA0310, MAGED2, PRSS11, SORL1, TGFB3, KRT18, CPE, BCAS1. No gene was directly related to cell proliferation such as cyclins, cyclin-dependent kinase, p53, p16, and the pRb and p21 families. We had a particular focus on a transcriptional factor E2F-5 from a list of genes overexpressed in ER negative breast cancers compared to ER positive breast cancers, and further examined. Gene amplification of E2F-5 was detected in 5/57 (8.8%) in breast cancers by FISH. No point mutation was found at the binding domain with DNA or dimerization partner of E2F-5. Immunohistochemically E2F-5 positive cancers were more frequent in ER(-)/HER2(-) cancer (14/27, 51.9%) than in other types of cancer (5/30, 16.7%) (p=0.05). E2F-5 positive cancers had higher Ki-67 labeling index (59.5%) than E2F-5 negative cancers (36.3%). E2F-5 positive cancers showed higher histological grade including metaplastic carcinoma, and worse clinical outcome with shorter disease free survival in node negative patients. In conclusion, we demonstrated that there is a population of breast cancer with overexpression of a cell cycle related transcriptional factor E2F-5. E2F-5 positive breast cancers were frequent in ER(-)/HER2(-) group with high Ki-67 labeling index, high histological grade and worse clinical outcome. Keywords: immunohistochemical phenotype
Project description:Analysis of 143 formalin-fixed, paraffin-embedded (FFPE) primary breast tumors using a Custom Breast Cancer Panel and Human Cancer Panel for the DASL platform. Molecular markers between the pathology defined subtypes of breast cancer were assessed to hypothesize potential therapeutic targets specific to the subtypes Molecular Characterization of 143 primary breast carcinomas including 101 triple negative (TN: ER-, PR-, HER2-), 3 HER2-positive (HER2+: ER-, PR-, HER2+), and 39 hormone receptor-positive (HR+: ER+ and/or PR+)
Project description:Breast cancer is a heterogeneous disease, and breast cancer cell lines are invaluable for studying this heterogeneity. However, the epigenetic diversity across these cell lines remains poorly understood. In this study, we performed genome-wide chromatin accessibility analysis on 23 breast cancer cell lines, including 2 estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative (ER+/HER2−), 3 ER+/HER2+, 2 HER2+, and 15 triple-negative breast cancer (TNBC) lines. These cell lines were classified into three groups based on their chromatin accessibility: the receptor-positive group (Group-P), TNBC basal group (Group-B), and TNBC mesenchymal group (Group-M). Motif enrichment analysis revealed that only Group-P exhibited coenrichment of forkhead box A1 (FOXA1) and grainyhead-like 2 (GRHL2) motifs, whereas Group-B was characterized by the presence of the GRHL2 motif without FOXA1. Notably, Group-M did not show enrichment of either FOXA1 or GRHL2 motifs. Furthermore, gene ontology analysis suggested that group-specific accessible regions were associated with their unique lineage characteristics. To investigate the epigenetic landscape regulatory roles of FOXA1 and GRHL2, we performed knockdown experiments targeting FOXA1 and GRHL2, followed by assay for transposase-accessible chromatin sequencing analysis. The findings revealed that FOXA1 maintains Group-P–specific regions while suppressing Group-B–specific regions in Group-P cells. In contrast, GRHL2 preserves commonly accessible regions shared between Group-P and Group-B in Group-B cells, suggesting that FOXA1 and GRHL2 play a pivotal role in preserving distinct chromatin accessibility patterns for each group. Specifically, FOXA1 distinguishes between receptor-positive and TNBC cell lines, whereas GRHL2 distinguishes between basal-like and mesenchymal subtypes in TNBC lines.
Project description:Breast cancer is a heterogeneous disease, and breast cancer cell lines are invaluable for studying this heterogeneity. However, the epigenetic diversity across these cell lines remains poorly understood. In this study, we performed genome-wide chromatin accessibility analysis on 23 breast cancer cell lines, including 2 estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative (ER+/HER2−), 3 ER+/HER2+, 2 HER2+, and 15 triple-negative breast cancer (TNBC) lines. These cell lines were classified into three groups based on their chromatin accessibility: the receptor-positive group (Group-P), TNBC basal group (Group-B), and TNBC mesenchymal group (Group-M). Motif enrichment analysis revealed that only Group-P exhibited coenrichment of forkhead box A1 (FOXA1) and grainyhead-like 2 (GRHL2) motifs, whereas Group-B was characterized by the presence of the GRHL2 motif without FOXA1. Notably, Group-M did not show enrichment of either FOXA1 or GRHL2 motifs. Furthermore, gene ontology analysis suggested that group-specific accessible regions were associated with their unique lineage characteristics. To investigate the epigenetic landscape regulatory roles of FOXA1 and GRHL2, we performed knockdown experiments targeting FOXA1 and GRHL2, followed by assay for transposase-accessible chromatin sequencing analysis. The findings revealed that FOXA1 maintains Group-P–specific regions while suppressing Group-B–specific regions in Group-P cells. In contrast, GRHL2 preserves commonly accessible regions shared between Group-P and Group-B in Group-B cells, suggesting that FOXA1 and GRHL2 play a pivotal role in preserving distinct chromatin accessibility patterns for each group. Specifically, FOXA1 distinguishes between receptor-positive and TNBC cell lines, whereas GRHL2 distinguishes between basal-like and mesenchymal subtypes in TNBC lines.
Project description:Differentially expressed genes between BRCA1/BRCA2 negative and positive mutation driven-tumors. Screening for germline mutations was performed in a cohort of 55 patients under the age of 35 years in the BRCA1, BRCA2, CHEK2 (c.del1,100C) and TP53 genes, and the respective tumors were investigated regarding hormonal receptors status, HER2 expression. Transcriptional profiles were performed using Agilent one color hybridizations in a G4112F platform.