Project description:Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduces the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals were still colonized (non-responders). To understand the underlying mechanism, we conducted 3 larger scale vaccination and challenge studies using 135 broiler birds and found a similar responder/non responder effect. The submitted data were used for a genome-wide association study of the chicken responses to glycoconjugate vaccination against Campylobacter jejuni.
Project description:In rainbow trout, type A spermatogonia can be split into SP cells and non-SP cells by the ability to exclude Hoechst 33342 dye (H33342). The H33342 fluorescence of SP cells are lower than that of non-SP cells, after H33342 staining. To investigate whether SP cells were transcriptomically distinct from non-SP cells, we compared the transcriptome of these cells. We used fluorescence-activated cell sorting (FACS) to isolate SP cells and non-SP cells from the type A spermatogonia in rainbow trout.
Project description:In rainbow trout, type A spermatogonia can be split into SP cells and non-SP cells by the ability to exclude Hoechst 33342 dye (H33342). The H33342 fluorescence of SP cells are lower than that of non-SP cells, after H33342 staining. To investigate whether SP cells were transcriptomically distinct from non-SP cells, we compared the transcriptome of these cells. We used fluorescence-activated cell sorting (FACS) to isolate SP cells and non-SP cells from the type A spermatogonia in rainbow trout. To compensate unavailability of genetically uniform rainbow trout in independent sampling, SP cells and non-SP cells were collected at 3 times from 3 different parental fish groups. This experimental design allowed us to estimate effects specific to each parental fish genotype on mRNA expression in SP cells by a statistical modeling and to exclude the effects in subsequent analysis.
Project description:Campylobacter jejuni is a major zoonotic pathogen transmitted to humans via the food chain. C. jejuni is prevalent in chickens, a natural reservoir for this pathogenic organism. Due to the importance of macrolide antibiotics in clinical therapy of human campylobacteriosis, development of macrolide resistance in Campylobacter has become a concern for public health.To facilitate understanding the molecular basis associated with the fitness difference between Erys and Eryr Campylobacter, we compared the transcriptomes between ATCC 700819 and its isogenic Eryr transformant T.L.101 using DNA microarray.