Project description:Schizophrenia is a severe psychiatric disease with complex etiology, affecting approximately one percent of the general population. Most genetic studies so far focused on disease association with common genetic variation such as single nucleotide polymorphisms, but recently it has become apparent that large-scale genomic copy number variants (CNVs) are involved in disease development as well. To assess the role of rare CNVs in schizophrenia, we screened 54 patients with deficit schizophrenia using Affymetrix’ GeneChip 250K SNP arrays. Keywords: genomic hybridisation
Project description:Detection of single feature polymorphisms comparing five barley genotypes. Gene expression under unstressed and drought stressed conditions. Tissue from five entire five day old seedlings from drought stress or unstressed growth conditions was used for RNA extraction. For Barke, Morex and Stepoe the two types of RNA were pooled. For Oregon Wolfe Barley Dominant and Recessive (OWBs), the two types of RNA were handled separately. Targets from three biological replicates of each genotype-treatment were generated and transcript levels were determined using Affymetrix Barley1 GeneChip arrays. Probe set, followed by single probe, comparisons between genotypes allows the identification of single feature polymorphisms in comparisons between genotypes. For the OWBs, comparisons between stressed and unstressed conditions defines stress-regulated genes. Keywords: repeat
Project description:We profiled basal gene expressed levels of 21 cell lines (18 cancer and 3 non-tumorigenic) using Affymetrix HG-U133_plus2 GeneChip microarrays. Goal of the experiment was to benchmark a number of algorithms for biomarker detection all of which utilize gene expression data.
Project description:High-resolution genomic microarrays provides simultaneous detection of copy-number aberrations such as the known recurrent aberrations in Chronic Lymphocytic Leukemia_diagnostic sample_patient (del(11q), del(13q), del(17p) and trisomy 12), and copy-number neutral loss of heterozygosity. We screened 369 newly diagnosed Chronic Lymphocytic Leukemia_diagnostic sample_patient patient samples from a population-based cohort using 250K single nucleotide polymorphism-arrays. Affymetrix SNP arrays were performed according to the manufacturer's directions on DNA extracted from peripheral blood samples.
Project description:High-resolution genomic microarrays provides simultaneous detection of copy-number aberrations such as the known recurrent aberrations in Chronic Lymphocytic Leukemia_diagnostic sample_patient (del(11q), del(13q), del(17p) and trisomy 12), and copy-number neutral loss of heterozygosity. We screened 369 newly diagnosed Chronic Lymphocytic Leukemia_diagnostic sample_patient patient samples from a population-based cohort using 250K single nucleotide polymorphism-arrays.
Project description:Schizophrenia is a severe psychiatric disease with complex etiology, affecting approximately one percent of the general population. Most genetic studies so far focused on disease association with common genetic variation such as single nucleotide polymorphisms, but recently it has become apparent that large-scale genomic copy number variants (CNVs) are involved in disease development as well. To assess the role of rare CNVs in schizophrenia, we screened 54 patients with deficit schizophrenia using Affymetrixâ GeneChip 250K SNP arrays. Keywords: genomic hybridisation We hybridized genomic DNA of 54 patients with deficit schizophrenia to Affymetrix' GeneChip 250K SNP (Nsp) arrays, and identified genome-wide CNV using the Copy Number Analyzer for Affymetrix GeneChip (CNAG v2.0) software, which uses a Hidden Markov Model (HMM) algorithm to calculate copy numbers.
Project description:Background: Genome-wide detection of single feature polymorphisms (SFP) in swine using transcriptome profiling of day 25 placental RNA by contrasting probe intensities from either Meishan or an occidental composite breed with Affymetrix porcine microarrays is presented. A linear mixed model analysis was used to identify significant breed-by-probe interactions. Results: Gene specific linear mixed models were fit to each of the log2 transformed probe intensities on these arrays, using fixed effects for breed, probe, breed-by-probe interaction, and a random effect for array. After surveying the day 25 placental transcriptome, 789 probes with a q-value ≤ 0.05 and |fold change| ≥ 2 for the breed-by-probe interaction were identified as candidates containing SFP. To address the quality of the bioinformatics approach, universal pyrosequencing assays were designed from Affymetrix exemplar sequences to independently assess polymorphisms within a subset of probes. Of those probes sampled from high-, medium-, and low-ranking categories, 20 of 27 were confirmed by pyrosequencing to contain SFPs. In most cases, the 25-mer probe sequence printed on the microarray diverged from Meishan, not occidental crosses. This analysis was used to define a set of highly reliable predicted SFPs according to their probability scores. Conclusions: By this method we detected transition and transversion single nucleotide polymorphisms, as well as insertions/deletions. These results demonstrate that this approach can identify polymorphisms between two breeds and/or lines of any species for which a short oligonucleotide array is available, and can be used to rapidly develop markers for genetic mapping and association analysis in species where high density genotyping platforms are otherwise unavailable. SNPs and INDELS discovered by this approach have been publicly deposited in NCBI’s SNP repository dbSNP. This method is an attractive bioinformatics tool for uncovering breed-by-probe interactions, for rapidly identifying expressed SNPs, for investigating potential functional correlations between gene expression and breed polymorphisms, and is robust enough to be used on any Affymetrix gene expression platform. Keywords: Transcriptional profiling of Day 25 porcine placentas