Project description:Laodelphax striatellus is naturally infected with the Wolbachia strain wStri, which significantly increase the fecundity of its host. Wolbachia-infected females produce 30%–40% more eggs than Wolbachia-uninfected females. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that play critical roles in the regulation of gene expression at post-transcriptional level. Here we report the differentially expressed miRNAs between Wolbachia-infected and Wolbachia-uninfected strains of L. striatellus ovaries. Our data may be helpful to explore the molecular mechanisms by which Wolbachia increase the fecundity of Laodelphax striatellus.
Project description:The filarial nematodes Brugia malayi, Wuchereria bancrofti and Onchocerca volvulus cause elephantiasis, dermatitis and blindness, resulting in severe morbidity in developing countries. 1.3 billion people are at risk of infection. Targeting the essential Wolbachia endobacteria of filarial nematodes with doxycycline has proven to be an effective therapy, resulting in a block in embryogenesis and worm development, and macrofilaricidal effects. However, doxycycline is contraindicated for a large portion of the at-risk population. To identify new targets for anti-wolbachial therapy, understanding the molecular basis of the Wolbachia-filaria symbiosis is required. We performed cross-species hybridization by using the Brugia malayi microarray to identify differentially expressed genes in the rodent filaria Litomosoides sigmodontis after depletion of Wolbachia which therefore might have a role in symbiosis.
Project description:We characterized the miRNA composition of the nucleus and the cytoplasm of uninfected cells and compared it with the one of cells infected with the endosymbiotic bacterium Wolbachia strain wMelPop-CLA. We found an overall increase of small RNAs between 18 and 28 nucleotides in both cellular compartments in Wolbachia-infected cells and identified specific miRNAs induced and/or suppressed by the Wolbachia infection. We discuss the mechanisms that the cell may use to shuttle miRNAs between the cytoplasm and the nucleus. In addition, we identified piRNAs that changed their abundance in response to Wolbachia infection. The miRNAs and piRNAs identified in this study provide promising leads for investigations into the host-endosymbiont interactions and for better understanding of how Wolbachia manipulates the host miRNA machinery in order to facilitate its persistent replication in infected cells.