Project description:This article describes complete mitochondrial DNA displacement loop sequences from 32 Japanese Black cattle and the analysis of these data in conjunction with previously published sequences from African, European, and Indian subjects. The origins of North East Asian domesticated cattle are unclear. The earliest domestic cattle in the region were Bos taurus and may have been domesticated from local wild cattle (aurochsen; B. primigenius), or perhaps had an origin in migrants from the early domestic center of the Near East. In phylogenetic analyses, taurine sequences form a dense tree with a center consisting of intermingled European and Japanese sequences with one group of Japanese and another of all African sequences, each forming distinct clusters at extremes of the phylogeny. This topology and calibrated levels of sequence divergence suggest that the clusters may represent three different strains of ancestral aurochs, adopted at geographically and temporally separate stages of the domestication process. Unlike Africa, half of Japanese cattle sequences are topologically intermingled with the European variants. This suggests an interchange of variants that may be ancient, perhaps a legacy of the first introduction of domesticates to East Asia.
Project description:With regulatory roles in development, cell proliferation and disease, micro-RNA (miRNA) biology is of great importance and a potential key to novel RNA-based therapeutic regimens. Biochemically based sequencing approaches have provided robust means of uncovering miRNA binding landscapes on transcriptomes of various species. However, a current limitation to the therapeutic potential of miRNA biology in cattle is the lack of validated miRNAs targets. Here, we use cross-linking immunoprecipitation (CLIP) of the Argonaute (AGO) proteins and unambiguous miRNA-target identification through RNA chimeras to define a regulatory map of miRNA interactions in the cow (Bos taurus). The resulting interactome is the deepest reported to date for any species, demonstrating that comprehensive maps can be empirically obtained. We observe that bovine miRNA targeting principles are consistent with those observed in other mammals. Motif and structural analyses define expanded pairing rules with most interactions combining seed-based pairing with distinct, miRNA-specific patterns of auxiliary pairing. Further, miRNA-target chimeras had predictive value in evaluating true regulatory sites of the miR-17 family. Finally, we define miRNA-specific targeting for >5000 mRNAs and determine gene ontologies (GO) for these targets. This confirmed repression of genes important for embryonic development and cell cycle progress by the let-7 family, and repression of those involved in cell cycle arrest by the miR-17 family, but it also suggested a number of unappreciated miRNA functions. Our results provide a significant resource for transcriptomic understanding of bovine miRNA regulation, and demonstrate the power of experimental methods for establishing comprehensive interaction maps.
Project description:We aimed to elucidate the effects of feeding condition (indoor grain-feeding vs. grazing on pasture) on c-miRNAs in Japanese Black (JB) cattle (Wagyu). The cattle at 18 months old were divided into pasture feeding and conventional indoor grain feeding for 5 months. Microarray analysis of c-miRNAs from the plasma extracellular vesicles led to the detection of a total of 202 bovine miRNAs in the plasma, including 15 miRNAs that differed between the feeding conditions.