Project description:The gene segments encoding antibodies have been studied in many capacities and represent some of the best-characterized gene families in traditional animal disease models (mice and humans). To date, multiple immunoglobulin light chain (IgL) isotypes have been found in vertebrates and it is unclear as to which isotypes might be more primordial in nature. Sequence data emerging from an array of fish genome projects is a valuable resource for discerning complex multigene assemblages in this critical branch point of vertebrate phylogeny. Herein, we have analyzed the genomic organization of medaka (Oryzias latipes) IgL gene segments based on recently released genome data. The medaka IgL locus located on chromosome 11 contains at least three clusters of IgL gene segments comprised of multiple gene assemblages of the kappa light chain isotype. These data suggest that medaka IgL gene segments may undergo both intra- and inter-cluster rearrangements as a means to generate additional diversity. Alignments of expressed sequence tags to concordant gene segments which revealed each of the three IgL clusters are expressed. Collectively, these data provide a genomic framework for IgL genes in medaka and indicate that Ig diversity in this species is achieved from at least three distinct chromosomal regions.
Project description:BackgroundBony fish present an immunological system, which evolved independently from those of animals that migrated to land 400 million years ago. The publication of whole genome sequences and the availability of several cDNA libraries for medaka (Oryzias latipes) permitted us to perform a thorough analysis of immunoglobulin heavy chains present in this teleost.ResultsWe identified IgM and IgD coding ESTs, mainly in spleen, kidney and gills using published cDNA libraries but we did not find any sequence that coded for IgT or other heavy chain isotypes described in fish. The IgM - ESTs corresponded with the secreted and membrane forms and surprisingly, the latter form only presented two constant heavy chain domains. This is the first time that this short form of membrane IgM is described in a teleost. It is different from that identified in Notothenioid teleost because it does not present the typical splicing pattern of membrane IgM. The identified IgD-ESTs only present membrane transcripts, with Cμ1 and five Cδ exons. Furthermore, there are ESTs with sequences that do not have any VH which disrupt open reading frames. A scan of the medaka genome using transcripts and genomic short reads resulted in five zones within a region on chromosome 8 with Cμ and Cδ exons. Some of these exons do not form part of antibodies and were at times interspersed, suggesting a recombination process between zones. An analysis of the ESTs confirmed that no antibodies are expressed from zone 3.ConclusionsOur results suggest that the IGH locus duplication is very common among teleosts, wherein the existence of a recombination process explains the sequence homology between them.
Project description:Adult male medaka (Oryzias latipes) were exposed to 10 ppm of cadmium for 96 h, and the testes were examined histopathologically. Numerous apoptotic cells were found in the spermatogonia and spermatocytes at 72 and 96 h after initiation of cadmium exposure, and the pyknotic index, TUNEL-positive rate, and cleaved caspase-3-positive rate in the spermatogonia and spermatocytes of the cadmium-treated group were higher compared with the control group. No significant difference between the control and cadmium-treated groups was found in the phospho-histone H3-positive rate in the spermatogonia and spermatocytes. No edematous, hemorrhagic, or necrotic changes were observed within the testes in the cadmium-treated group. These results suggest that spermatogonia and spermatocytes in medaka testes are highly sensitive to cadmium. Exposure to 10 ppm of cadmium induced histopathologic changes in the testes that were similar to those described in rodents exposed to low doses of cadmium.