Project description:AnarQue and Figliar are bacteriophages identified from the host bacterium Gordonia rubripertincta NRRL B-16540. AnarQue is circularly permuted and has a length of 61,822 bp; it is assigned to cluster DR. Figliar has a 3' sticky overhang and a length of 61,147 bp; it is assigned to cluster DJ.
Project description:Jellybones and NHagos are bacteriophages that were identified in the host bacterium Gordonia rubripertincta NRRL B-16540. Jellybones has a direct terminal repeat and was assigned to the CS2 subcluster with a length of 77,514 bp. NHagos is circularly permuted and was assigned to the DR cluster with a length of 59,580 bp.
Project description:Two lytic phages infecting Gordonia rubripertincta were isolated from irrigated desert soil. Phage LilyPad and PokyPuppy have 64,158-bp and 77,065-bp genomes, respectively. Based on gene content similarity to phages in the Actinobacteriophage database, LilyPad is assigned to phage subcluster DG1 and PokyPuppy to subcluster CS2.
Project description:Bacteriophage Survivors is a siphovirus isolated from Gordonia rubripertincta NRRL B-16540. Survivors has a 45,436-bp genome encoding 69 predicted protein-coding genes, of which 32 have assigned functions. Based on gene content similarity to sequenced actinobacteriophages, Survivors is assigned to phage cluster CT.
Project description:Among bacteria, only a single styrene-specific degradation pathway has been reported so far. It comprises the activity of styrene monooxygenase, styrene oxide isomerase, and phenylacetaldehyde dehydrogenase, yielding phenylacetic acid as the central metabolite. The alternative route comprises ring-hydroxylating enzymes and yields vinyl catechol as central metabolite, which undergoes meta-cleavage. This was reported to be unspecific and also allows the degradation of benzene derivatives. However, some bacteria had been described to degrade styrene but do not employ one of those routes or only parts of them. Here, we describe a novel "hybrid" degradation pathway for styrene located on a plasmid of foreign origin. As putatively also unspecific, it allows metabolizing chemically analogous compounds (e.g., halogenated and/or alkylated styrene derivatives). Gordonia rubripertincta CWB2 was isolated with styrene as the sole source of carbon and energy. It employs an assembled route of the styrene side-chain degradation and isoprene degradation pathways that also funnels into phenylacetic acid as the central metabolite. Metabolites, enzyme activity, genome, transcriptome, and proteome data reinforce this observation and allow us to understand this biotechnologically relevant pathway, which can be used for the production of ibuprofen.IMPORTANCE The degradation of xenobiotics by bacteria is not only important for bioremediation but also because the involved enzymes are potential catalysts in biotechnological applications. This study reveals a novel degradation pathway for the hazardous organic compound styrene in Gordonia rubripertincta CWB2. This study provides an impressive illustration of horizontal gene transfer, which enables novel metabolic capabilities. This study presents glutathione-dependent styrene metabolization in an (actino-)bacterium. Further, the genomic background of the ability of strain CWB2 to produce ibuprofen is demonstrated.
Project description:Pherobrine and Burley are siphoviruses infecting Gordonia rubripertincta. Pherobrine has a 60,305-bp genome with 89 predicted protein-coding genes, and Burley has a 60,111-bp genome with 90 predicted protein-coding genes. Both phages are assigned to cluster DJ, where they share 78% gene content similarity with each other.
Project description:CaiB is a DR cluster actinobacteriophage that was isolated from soil in Florida using Gordonia rubripertincta NRRL B-16540 as the host. The genome is 61,620 bp, has a GC content of 68.6%, and contains 85 predicted protein coding genes. CaiB has several putative operons and has repeated intergenic regions that may be involved in gene regulation.
Project description:Through the SEA-PHAGES program at Tufts University, a bacteriophage infecting Gordonia rubripertincta NRRL B-16540 was isolated and characterized. Hexbug is a lytic phage and is currently one of 44 phages belonging to cluster CT. The Hexbug genome shares >96% nucleotide identity with cluster CT phage Orla.