Project description:A caffeine-resistant Saccharomyces cerevisiae mutant strain was obtained using an evolutionary engineering strategy based on successive batch cultivation at gradually increasing caffeine levels. The mutant strain Caf905-2 was selected at a caffeine concentration where its reference strain could not grow at all. Whole-genome transcriptomic analysis of Caf905-2 was performed with respect to its reference strain.
Project description:The bacterium Novosphingobium sp. THN1 (THN1) is capable of degrading microcystin-LR (MCLR). To get an insight into genes expression during MCLR degradation and the regulation of different carbon concentrations on MCLR degradation, we performed RNA-seq of THN1 during MCLR degradation under different carbon concentrations.
Project description:In this study, we isolated a potent doxycycline-degrading bacterium, Chryseobacterium sp. WX1, from environmental samples. To elucidate the molecular mechanisms underlying doxycycline degradation by strain WX1, we assessed and interpreted the proteomic profiles of Chryseobacterium sp. WX1 under conditions both with and without doxycycline exposure.
Project description:We used a modification of GINI analysis to identify genes containing premature translation termination codons (PTC) generated by nonsense or frameshift mutations in prostate cancer cell lines. The analysis was performed in two steps. In the first step nonsense mediated mRNA decay (NMD) was inhibited in prostate cancer cell lines using incubation with medium containing caffeine for 4 hours. Gene expression analysis of caffeine treated or untreated cells after this step detects mRNA accumulation that takes place for genes containing PTC and as well as for genes that show induction of transciption due to stress caused by NMD inhibition. In the second step either both transcription and NMD or transcription only are blocked by incubating cell in a medium containing either both actinomycin D and caffeine or actinomacin D only for 4 hours. Gene expression analysis after this second step detects mRNA degradation for genes containing PTC as well as for genes that show induction of transciption due to stress caused by NMD inhibition. The efficiency of mRNA degradation for genes containing PTC during this step depends on whether NMD is inhibited or not. The efficiency of mRNA degradation for stress response genes does not depend on whether NMD is inhibited or not. Our modified GINI protocol allows efficient separation of genes containing PTC from the genes that show mRNA increases due to stress response to NMD inhibition. Experiment Overall Design: The LNCaP and 22Rv1 cells were seeded into four 60 mm tissue culture plates each. Caffeine (10 mM) was added to three plates and one plate was incubated without caffeine as a control. Following four hours? incubation, the medium was removed from one plate (with caffeine) and from the control plate and total RNA was prepared using TRIZOL reagent, according to manufacturer?s instructions, and used for an Affymetrix U133Plus2.0 oligonucleotide array hybridization. The caffeine-containing medium of the two remaining plates was removed, the cells were washed twice with phosphate-buffered saline and the medium with actinomycin D (2 mkg/ml) together with caffeine (10 mM) was added to one plate. Actinomycin D alone was added to the other plate. Following another four hours? incubation, the total RNA from both plates was prepared and used for an Affymetrix U133Plus2.0 oligonucleotide array analysis.
Project description:The degradation of aromatic compounds comprises an important step in the removal of pollutants and re-utilization of plastics and other non-biological polymers. Here we set out to study Pseudomonas sp. strain phDV1, a gram-negative bacterium that was selected for its ability to degrade aromatic compounds. In order to understand how the aromatic compounds and their degradation products are reintroduced in the metabolism of the bacteria and the systematic/metabolic response of the bacterium to the new carbon source, the proteome of this strain was analysed in the presence of succinate, phenol and o-, m-, p-cresol as sole carbon source. We then applied label-free quantitative proteomics to monitor overall proteome remodeling during metabolic adaptation to different carbon sources. As a reference proteome, we grew the bacteria in succinate and then compared the respective proteomes of bacteria grown on phenol and different cresols. In total, we identified 2295 proteins; 1908 proteins were used for quantification between different growth conditions. We found that 70, 100, 150 and 155 proteins were significantly differentially expressed in cells were grown in phenol, o-, m- and p-cresol-containing medium, respectively. The carbon source affected the synthesis of enzymes related to aromatic compound degradation, and in particular, the enzyme involved in the meta-pathway of monocyclic aromatic compounds degradation. In addition, proteins involved in the production of polyhydroxyalkanoate (PHA), an attractive biomaterial, showed higher expression levels in the presence of monocyclic aromatic compounds.Our results provide for the first time comprehensive information on the proteome response of this strain to monocyclic aromatic compounds.
Project description:These data belong to a metabolic engineering project that introduces the reductive glycine pathway for formate assimilation in Cupriavidus necator. As part of this project we performed short-term evolution of the bacterium Cupriavidus necator H16 to grow on glycine as sole carbon and energy source. Some mutations in a putiative glycine transporting systems facilitated growth, and we performed transcriptomics on the evolved strain growing on glycine. Analysis of these transcriptomic data lead us to the discovery of a glycine oxidase (DadA6), which we experimentally demonstrated to play a key role in the glycine assimilation pathay in C. necator.
Project description:Rhizoremediation, the biotechnology of the utilization of rhizospheric microorganisms associated with plant roots for the elimination of soil contaminants, is based on the ability of microorganisms to metabolize nutrients from plant root exudates, in order to survive the stressful conditions of the rhizosphere, and thereby, to co-metabolize or even mineralize toxic environmental contaminants. Novosphingobium sp. HR1a is a bacterial strain able to degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs). We have demonstrated that this bacterium is able to grow in vegetated microcosms and to eliminate phenanthrene in the presence of clover faster than in non-vegetated systems, establishing a positive interaction with clover. We have studied the molecular basis of this interaction by phenomic, metabolomic and transcriptomic analyses, demonstrating that the positive interaction between clover and Novosphingobium sp. HR1a is a result of the bacterial utilization of different carbon and nitrogen sources (such as sugars, amino acids and organic acids) released during seedling development, and the capacity of exudates to induce the PAH degradation pathway. These results are pointing out to Novosphingobium sp. HR1a as a promising strain for the bioremediation of PAH-contaminated soils.
Project description:Background: The high number of heavy metal resistance genes in the soil bacterium Cupriavidus metallidurans CH34 makes it an interesting model organism to study microbial responses to heavy metals. Results: In this study the transcriptional response of this bacterium was measured after challenging it to a wide range of sub-lethal concentrations of various essential or toxic metals. Considering the global transcriptional responses for each challenge as well as by identifying the overlap in upregulated genes between different metal responses, the sixteen metals could be clustered in three different groups. Additionally, next to the assessment of the transcriptional response of already known metal resistance genes, new metal response gene clusters were identified. The majority of the metal response loci showed similar expression profiles when cells were exposed to different metals, suggesting complex cross-talk at transcriptional level between the different metal responses. The highly redundant nature of these metal resistant regions – illustrated by the large number of paralogous genes – combined with the phylogenetic distribution of these metal response regions within evolutionary related and other metal resistant bacteria, provides important insights on the recent evolution of this naturally soil dwelling bacterium towards a highly metal-resistant strain found in harsh and anthropogenic environments. Conclusions: The metal-resistant soil bacterium Cupriavidus metallidurans CH34 displays myriads of gene expression patterns when exposed to a wide range of heavy metals at non-lethal concentrations. The interplay between the different gene expression clusters points towards a complex cross-regulated regulatory network governing heavy metal resistance in C. metallidurans CH34. Keywords: Cupriavidus metallidurans CH34, transcriptional regulation, heavy metal resistance
Project description:The physiological and transcriptomic response of the metal resistant bacterium Cupriavidus metallidurans strain CH34 in response to stable (non-radioactive) strontium ions (Sr) was investigated. C. metallidurans CH34 could survive and proliferate in the presence of relatively high concentrations of SrCl2 (D10 is 70mM, MIC is 120 mM). Precipitation of Sr as strontium carbonate was observed in the culture during aerobic growth of CH34 in the presence of 60 mM SrCl2. To identify the cellular mechanisms involved in the bioprecipitation process, gene expression in the cells was analyzed after short-time (30 min) exposure to low (5 mM) and high (60 mM) concentrations of SrCl2. The transcription of the gene clusters annotated as hmyFCBA and czcCBADRS, coding for ion efflux pumps, was significantly induced following exposure to Sr, and not with Ca. There were also significant changes is the transcription of the genes encoding TctCBA proteins involved in citrate uptake and two hypothetical porin coding genes following exposure Sr and Ca. These results highlight a specific molecular response of bacterium Cupriavidus metallidurans CH34 to Sr, including the identification of putative Sr specific efflux pumps, and thus the potential of this bacterium to distinguish Sr from Ca. These findings will help to better understand natural Sr (and Ca) microbial weathering or mineralization processes in the environment, and could be of interest for bioremediation or bioprocessing of (radioactive) Sr-containing water, soil or waste.