Project description:This SuperSeries is composed of the following subset Series: GSE12809: Symbiodinium clade content drives host transcriptome more than thermal stress in the coral Montastraea faveolata (part 1) GSE15253: Symbiodinium clade content drives host transcriptome more than thermal stress in the coral Montastraea faveolata (part 2) Refer to individual Series
Project description:Given the overwhelming evidence that symbiont genotypes differentially affect host processes such as growth, bleaching susceptibility, and nutrient acquisition, we set out to measure gene expression differences in fragments of Montastraea faveolata harboring two different clades of Symbiodinium. On the reefs near Puerto Morelos, México, colonies of M. faveolata are known to shift algal symbiont clade with depth, often associating with clade A at the top, clade B in the middle, and clade C near the bottom of the colony. By measuring photosynthetic efficiency and gene expression in control and heat-stressed fragments containing either clade B, clade C, or a mix of both, we found that: 1) the algal response to thermal stress is due to both host and algal factors; 2) fragments of M. faveolata express different genes in response to sub-bleaching thermal stress depending on algal genotype; 3) the overall effect of heat stress on coral gene expression is less significant than the effect of housing different zooxanthellae types. Overall, we present convincing evidence that different Symbiodinium clades may be functionally distinct, which in turn, greatly influences host gene expression.
Project description:A mutualistic relationship between reef-building corals and endosymbiotic algae (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. If, and to what extent, differences in algal symbiont clade contents can exert effects on the coral host transcriptome is currently unknown. In this study, we monitored algal physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered coral fragments using a custom cDNA gene expression microarray. Combining these analyses with results from algal and host genotyping revealed a striking symbiont effect on both the acclimated coral host transcriptome and the magnitude of the thermal stress response. This is the first study that links coral host transcriptomic patterns to the clade content of their algal symbiont community. Our data provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-algal partnerships.