Project description:To study the effect of PIAS1 on transcriptional regulation, we establishedstable PIAS1 shRNA knockdown cells in breast cancer cell line MDA-MB231. By comparing the expression profiles of control vs PIAS1 knockdown cells, we can identify potential PIAS1 target genes involved in breast tumorigenesis. MDA-MB231 Control shRNA and PIAS1 shRNA2 cells were cultured in DMEM plus 10% FBS (DMEM) or SCM for 30 h, and total RNA was used for microarray.
Project description:Mfng, a modulator of Notch signaling, is highly expressed in human claudin-low breast cancer (CLBC). To determine Mfng’s roles in CLBC pathogenesis,we knocked down Mfng in a CLBC cell line MDA-MB231, and found that Mfng knockdown altered Notch activation, decreased tumor sphere formation in vitro, and reduced tumor growth in xenograft model. To identify the potential downstream targets of Mfng during CLBC tumorigenesis, we compared the gene expression profiles between xenografts tumor derived from of MDA-MB231 cells carrying Mfng shRNA and the control vector. Mfng, a modulator of Notch signaling, is highly expressed in human claudin-low breast cancer (CLBC). To determine Mfng’s roles in CLBC pathogenesis,we knocked down Mfng in a CLBC cell line MDA-MB231, and found that Mfng knockdown caused alteration in Notch activation, associated with decreased tumor sphere formation in vitro, as well as reduced tumor growth in xenograft model. We intend to compare gene expression profiles between xenografts of MDA-MB231 cells carrying Mfng shRNA and the control vector. This project seeks to identify potential downstream targets of Mfng in CLBC. MDA-MB231 cells were transfected with shRNA against MFNG. Stable cell clones with knockdown of MFNG or corresponding control were selected and injected orthotopically into SCID mice. Total RNA was then extracted from the xenograph tumors for microarray analysis.
Project description:RNA-Seq profiling of triple-negative MDA-MB-231 cell line with know-down of non-canonical WNT signaling receptor Ror1. The MDA-MB231 cells were either transfected with a non-sense control shRNA (shCTL) or with a ROR1 shRNA (shROR1) construct. The objective was to find expression-responsive targets of these perturbations as potential drivers of MDA-MB231 cell invasiveness.
Project description:Experiments to test the effect of CtBP2 inhibition on metabolism of breast cell lines. In particular, experiment 1 involves comparison between a normal breast cell line (MCF102A) and a triple-negative breast cancer cell line (MDA-MB231). Experiment 2 is a study between MDA-MB231 silenced for CtBP2 by stable RNA interference (shCtBP2 cells) compared to scramble (shCTRL cells). Experiment 3 is a comparison between a normal breast cell line (MCF102A) and a triple-negative breast cancer cell line (MDA-MB231)in the presence of the absence of small-molecule CtBP inhibitors: HIPP (400 μM) or P4 (300 μM)for 48 hours.
Project description:Mfng, a modulator of Notch signaling, is highly expressed in human claudin-low breast cancer (CLBC). To determine Mfng’s roles in CLBC pathogenesis,we knocked down Mfng in a CLBC cell line MDA-MB231, and found that Mfng knockdown altered Notch activation, decreased tumor sphere formation in vitro, and reduced tumor growth in xenograft model. To identify the potential downstream targets of Mfng during CLBC tumorigenesis, we compared the gene expression profiles between xenografts tumor derived from of MDA-MB231 cells carrying Mfng shRNA and the control vector. Mfng, a modulator of Notch signaling, is highly expressed in human claudin-low breast cancer (CLBC). To determine Mfng’s roles in CLBC pathogenesis,we knocked down Mfng in a CLBC cell line MDA-MB231, and found that Mfng knockdown caused alteration in Notch activation, associated with decreased tumor sphere formation in vitro, as well as reduced tumor growth in xenograft model. We intend to compare gene expression profiles between xenografts of MDA-MB231 cells carrying Mfng shRNA and the control vector. This project seeks to identify potential downstream targets of Mfng in CLBC.