Project description:mRNAs comparison between Ustilago maydis wild type grown in diluted YEPS (control) and in cell-free supernatants of Ustilago maydis wild type treated with H202 in two different concentrations (0.4% and 0.7%).
Project description:Investigation of whole genome gene expression level in Pseudozyma antarctica T-34, compared to Ustilago maydis UM521. To clarify the transcriptomic characteristics of Pseudozyma antarctica under the conditions of high MEL production, a DNA microarray of both the strains, Pseudozyma antarctica T-34 and Ustilago maydis UM521 was prepared and analyzed the transcriptomes.
Project description:The fungal pathogen Ustilago maydis establishes a biotrophic relationship with its host plant maize. Hallmarks of the disease are large plant tumors in which fungal proliferation occurs. Plants have developed various defense pathways to cope with pathogens. We used microarrays to detail the global programme of gene expression during the infection process of Ustilago maydis in its host plant to get insights into the defense programs and the metabolic reprogramming needed to supply the fungus with nutrients. Keywords: time course
Project description:Investigation of whole genome gene expression level in Pseudozyma antarctica T-34, compared to Ustilago maydis UM521. To clarify the transcriptomic characteristics of Pseudozyma antarctica under the conditions of high MEL production, a DNA microarray of both the strains, Pseudozyma antarctica T-34 and Ustilago maydis UM521 was prepared and analyzed the transcriptomes. A DNA chip study using mRNA from the cultures of Pseudozyma antarctica T-34 and Ustilago maydis UM521 demonstrated the gene expression level of each strain.
Project description:Study of gene regulation basidiocarps development in Ustilago maydis using transcriptomic analysis. In 2012, Cabrera-Ponce et al. established conditions allowing a completely different developmental program in U. maydis when grown on solid medium containing Dicamba (synthetic auxin) in dual cultures with maize embryogenic calli.
Project description:The coding transcriptomes of filamentous cultures of the maize smut fungus Ustilago maydis and their extracellular vesicles (EVs) were compared. Protein-coding transcripts relatively enriched in EVs versus filament cells were identified and examined to identify potentially functional mRNA cargos of U. maydis EVs.