Project description:Veillonella parvula is a biofilm-forming commensal found in the lungs, vagina, mouth, and gastro-intestinal tract of humans, yet it may also develop into an opportunistic pathogen. Furthermore the presence of Veillonella has been associated with the development of a healthy immune system in infants. Veillonella belongs to the Negativicutes, a diverse clade of bacteria that represent an evolutionary enigma: they are phylogenetically placed within Gram-positive (monoderm) Firmicutes yet maintain an outer membrane (OM) with lipopolysaccharide similar to classic Gram-negative (diderm) bacteria. The OMs of Negativicutes have unique characteristics, such as the replacement of Braun’s lipoprotein by OmpM for anchoring the outer membrane to the peptidoglycan. Through phylogenomic analysis, we have recently provided the first bioinformatic annotation of the Negativicute diderm cell envelope. We showed that it is a unique type of envelope that was present in the ancestor of present-day Firmicutes and lost multiple times independently in this phylum, giving rise to the monoderm architecture. However, little experimental data is presently available for any Negativicute cell envelope. Here, we have performed the first experimental proteomic characterization of the cell envelope of these atypical diderm Firmicutes, producing an OM proteome of Veillonella parvula. We initially conducted a thorough bioinformatics analysis of all 1844 predicted proteins from Veillonella parvula DSM 2008’s genome using seven different localization prediction programs. These results were then complemented by protein extraction with surface exposed protein tags and subcellular fractionation, which were then sequenced by liquid chromatography tandem mass spectrometry. The merging of proteomics and bioinformatics results allowed identification of 76 OM proteins. Their annotation markedly extends previous inferences on the nature of the cell envelope of Negativicutes, and provides important information on the role of OM systems in the lifestyle of Veillonella.
Project description:Whole-Genome Sequences of a cluster of 14 unidentified related Veillonella sp. from human clinical samples and type strains of 4 Veillonella validated species
Project description:Streptococcus mutans was grown for 48 h in a biofilm in the absence (single species) and in the presence (dual species) of Veillonella parvula. In addition V. parvula single species 48 h biofilms were grown, to be used as a control. RNA was harvested from all types of biofilms and the transcript levels of the two types of biofilms containing S. mutans were compared with the use of S. mutans microarrays. V. parvula RNA was hybridized to S. mutans microarrays as a control for possible cross-hybridisation.
Project description:To combat dental implant-associated infections, there is a need for novel materials which effectively inhibit bacterial biofilm formation. In the present study, a titanium surface functionalization based on the “slippery liquid-infused porous surfaces” (SLIPS) principle was analyzed in an oral flow chamber system. The immobilized liquid layer was stable over 13 days of continuous flow. With increasing flow rates, the surface exhibited a significant reduction in attached biofilm of both the oral initial colonizer Streptococcus oralis and an oral multi-species biofilm composed of S. oralis, Actinomyces naeslundii, Veillonella dispar and Porphyromonas gingivalis. Using single cell force spectroscopy, reduced bacterial adhesion forces on the lubricant layer could be measured. Gene expression patterns in biofilms on SLIPS, on control surfaces and planktonic cultures were also compared. For this purpose, the genome of S. oralis strain ATCC® 9811TM was sequenced using PacBio Sequel technology. Even though biofilm cells showed clear changes in gene expression compared to planktonic cells, no differences could be detected between bacteria on SLIPS and on control surfaces. Therefore, it can be concluded that the ability of liquid-infused titanium to repel biofilms is solely due to weakened bacterial adhesion to the underlying liquid interface.