Project description:Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) facilitate breast cancer (BC) metastasis, however stable molecular changes that result as a consequence of these processes remain poorly defined. Therefore, we sought to identify molecular markers that could distinguish tumor cells that had completed the EMT:MET cycle in the hopes of identifying and targeting unique aspects of metastatic tumor outgrowth.Therefore, normal murine mammary gland (NMumG) cells transformed by overexpression of EGFR (NME) cells were cultured in the presence of TGF-beta1 (5 ng/ml) for 4 weeks, at which point TGF-beta1 supplementation was discontinued and the cells were allowed to recover for an additional 4 weeks (Post-TGF-Rec). Total RNA was prepared from unstimulated cells (Pre-TGF) of similar passage and compared by microarray analysis. The two groups were analyzed in triplicate, three Pre-TGF samples and three Post-TGF-Rec samples.
Project description:Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) facilitate breast cancer (BC) metastasis, however stable molecular changes that result as a consequence of these processes remain poorly defined. Therefore, we sought to identify molecular markers that could distinguish tumor cells that had completed the EMT:MET cycle in the hopes of identifying and targeting unique aspects of metastatic tumor outgrowth.Therefore, normal murine mammary gland (NMumG) cells transformed by overexpression of EGFR (NME) cells were cultured in the presence of TGF-beta1 (5 ng/ml) for 4 weeks, at which point TGF-beta1 supplementation was discontinued and the cells were allowed to recover for an additional 4 weeks (Post-TGF-Rec). Total RNA was prepared from unstimulated cells (Pre-TGF) of similar passage and compared by microarray analysis.
Project description:Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease; EBV has previously been localised to alveolar epithelial cells of IPF patients. The molecular process of the epithelial mesenchymal transition (EMT) in IPF remains still unknown. Using an oligonucleotide array analysis, we observed dysregulated expression of members of non-canonical Wnt family in EBV infected A549 after TGF?1 exposure. TGF?1 exposure induced EMT increasing ?-Smooth Muscle Actin (ACTC) and Wnt5b gene expression, but decreasing E-cadherin and DKK1. When data were analyzed as a function of Wnt5b in EMT, significance differences in ACTC and E-cadherin gene expression, active TGF?1 protein levels and collagen deposition could be detected. Treatment with 9-cis Retinoic Acid (9-cisRA) significantly inhibited Wnt5b expression in both EBV infected and non-infected A549, followed by decreased collagen deposition and active TGF?1 protein level. Specific non-canonical Wnt-signalling genes are dysregulated in EBV infected cells and A549 treated with TGF?1; while, 9-cisRA treatment appears to attenuate EMT process in vitro. Experiment Overall Design: EBV infected cells and A549 were cultured in RPMI1640+5%FCS, and exposed to 10ng/ml TGF beta1 for 4hours. RNA isolation, cDNA synthesis, in vitro transcription and microarray analysis were performed as previously reported (Kieran et al., 2003). All analysis were microarrayed in duplicate. Image files were obtained through Affymetrix GeneChip software (MAS5), subsequently robust multichip analysis (RMA) was performed. Expression data were compared to control, p<0.05 correlated values and a signal log ratio of 0.6 or greater (equivalent to a fold change in expression of 1.5 or greater) were taken to identify significant differential regulation (Bolstad et al., 2003). All the SLRs data resulting from the comparative analyses in duplicate were reported in a scatter plot graph to determine the reliability of the assay and the linearity by r2. For all the microarray assays r2 value was higher than 0.98. Using normalised RMA values by Gene Cluster Software, Average Linkage Hierarchical Cluster Analysis was performed using TreeView analysis software (Eisen et al., 1998). Lists of dysregulated genes in both TGF?1 exposed cell lines were curated via the publicly available DAVID, Gene-Ontology (GOCharts) and Functional Annotation Clustering databases (Dennis et al., 2003).
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.