Project description:There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally novel compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.
2023-08-21 | PXD044230 | Pride
Project description:metabolically active fungi in air
Project description:Background. Bacteria of the Candidate Phyla Radiation (CPR), constituting about 25% of the bacterial biodiversity, are characterized by small cell size and patchy genomes without complete key metabolic pathways suggesting symbiotic life styles. Gracilibacteria (BD1-5) are part of the CPR branch, they possess alternate coded genomes and have two cultivated members that were shown to be microbial predators. However, besides genomic sampling, little is known about the lifestyle of Gracilibacteria, their temporal dynamics, and activity in natural ecosystems, and particularly groundwater where they have initially been genomically resolved. The current study was set out with the aim of investigating the metaproteogenome of Gracilibacteria as a function of time in the cold-water geyser Wallender Born in the Volcanic Eifel region in Germany, to estimate their activity in situ and discern expressed genes involved in their lifestyle. Results. We coupled genome-resolved metagenomics and metaproteomics to investigate a microbial community enriched in Gracilibacteria across a 12-day time-series. Groundwater was collected and sequentially filtered onto 0.2-μm and 0.1-μm filters to fraction CPR and other bacteria. Based on 670 Gbps of metagenomic data, 1129 different ribosomal protein S3 marker genes and 751 high-quality genomes (123 population genomes after dereplication), we identified dominant bacteria belonging to Galionellales and Gracilibacteria along with keystone microbes, low in genomic abundance but substantially contributing to proteomic abundance. Seven high-quality Gracilibacteria genomes showed typical limitations in their central metabolism but no co-occurrence to potential hosts. Their genomes encoded for a high number of proteins related to a predatory lifestyle, whose expression was detected in the proteome and included subunits related to type IV and type II secretion systems, as well as features related to cell-cell interactions and cell motility. Conclusion. We present a highly resolved analysis coupling metagenomics to metaproteomics for elucidating microbial dynamics of Gracilibacteria in groundwater. We posit that Gracilibacteria are successful microbial predators in this ecosystem potentially aiding in population control of this highly disturbed microbial community from the deep biosphere.
Project description:The fate of the carbon stocked in permafrost soils following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but their composition and functional potential in permafrost soils are largely unknown. Here, a 2 m deep permafrost and its overlying active layer soil were subjected to metagenome sequencing, quantitative PCR, and microarray analyses. The active layer soil and 2 m permafrost soil microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two soils also possessed a highly similar spectrum of functional genes, especially when compared to other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both soils in the metagenomic libraries and some (e.g. pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2 m permafrost soil showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated and showed that the whole community genome amplification technique used caused large representational biases in the metagenomic libraries. This study described for the first time the detailed functional potential of permafrost-affected soils and detected several genes and microorganisms that could have crucial importance following permafrost thaw. A 2m deep permafrost sample and it overlying active layer were sampled and their metagenome analysed. For microarray analyses, 8 other soil samples from the same region were used for comparison purposes.
Project description:Sulfur metabolism in the deep-sea cold seep has been mentioned to have an important contribution to the biogeochemical cycle of sulfur in previous studies. And sulfate reducing bacteria have also been considered to be a dominant microbial population in the deep-sea cold seep and play a crucial role in this process. However, most of sulfate reducing bacteria from cold seep still cannot be purely cultured under laboratory conditions, therefore the actual sulfur metabolism pathways in sulfate reducing bacteria from the deep-sea cold seep have remained unclear. Here, we isolate and pure culture a typical sulfate reducing bacterium Desulfovibrio marinus CS1 from the sediment sample of the deep-sea cold seep in the South China Sea, which provides a probability to understand the sulfur metabolism in the cold seep.
2024-06-16 | PXD023247 | Pride
Project description:A diverse and metabolically active microbial community persists in deep subsurface clay borehole water
Project description:Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, in recent years histone proteins have been identified in a few bacterial clades, in particular the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no experimental functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a Bacteriovorax strain). We find that Bacteriovorax chromatin is characterized by preferential accessibility around promoter regions, similar to what is observed in eukaryotes with compact genomes such as yeast, and also to some archaea. As in eukaryotes, chromatin accessibility positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that Bacteriovorax promoters exhibit very strong polymerase pausing, unlike in yeast, but similar to the state of mammalian and fly promoters. Finally, the Bacteriovorax genome exists in a three-dimensional (3D) conformation analogous to that of other bacteria without histones, organized by the parABS system and along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the deep evolution of chromatin organization across the tree of life.