Project description:S. pastorianus strains are hybrids of S. cerevisiae and S. eubayanus that have been domesticated for several centuries in lager-beer brewing environments. As sequences and structures of S. pastorianus genomes are being resolved, molecular mechanisms and evolutionary origin of several industrially relevant phenotypes remain unknown. This study investigates how maltotriose metabolism, a key feature in brewing, may have arisen in early S. eubayanus x S. cerevisiae hybrids. To address this question, we generated a near-complete genome assembly of Himalayan S. eubayanus strains of the Holarctic subclade. This group of strains have been proposed to be the origin of the S. eubayanus subgenome of current S. pastorianus strains. The Himalayan S. eubayanus genomes harbored several copies of an SeAGT1 -oligoglucoside transporter gene with high sequence identity to genes encountered in S. pastorianus. Although Himalayan S. eubayanus strains are unable to grown on maltose and maltotriose, their maltose-hydrolase and SeMALT1 and SeAGT1 maltose-transporter genes complemented the corresponding null mutants of S. cerevisiae. Expression, in a Himalayan S. eubayanus strain, of a functional S. cerevisiae maltose-metabolism regulator gene (MALx3) enabled growth on oligoglucosides. The hypothesis that the maltotriose-positive phenotype in S. pastorianus is a result of heterosis was experimentally tested by constructing a S. cerevisiae x S. eubayanus laboratory hybrid with a complement of maltose-metabolism genes that resembles that of current S. pastorianus strains. The ability of this hybrid to consume maltotriose in brewer's wort demonstrated regulatory cross talk between sub-genomes and thereby validated this hypothesis. These results provide experimental evidence of the evolutionary origin of an essential phenotype of lager-brewing strains and valuable knowledge for industrial exploitation of laboratory-made S. pastorianus-like hybrids.
Project description:Saccharomyces pastorianus is the yeast used to make lager beer; it is known to be an interspecific hybrid formed by the fusion between S. cerevisiae and S. bayanus genomes. This data set queries 17 S. pastorianus strains, collected at various times over the last 125 years from various breweries located in different geographical locations, which were obtained from CBS and DBVPG culture collections. The data in this set represent array-CGH experiments performed with these strains, using "2-species" custom Agilent arrays (the "2-species" arrays contain probes spaced every ~2 kb across the whole genomes of both S. cerevisiae and S. bayanus; the probes are unique and specific for each genome). The data set also contains 3 self-self hybridizations (S. cerevisiae + S. bayanus DNA mixed together in equimolar amounts, then labeled green or red in separate reactions, then hybridized to the "2-species" arrays) used for normalization in CGH-Miner analysis. A strain or line experiment design type assays differences between multiple strains, cultivars, serovars, isolates, lines from organisms of a single species.
Project description:We report the gene expression profile of two polypolid Saccharomyces pastorianus, lager yeast strains, the Group I strain CBS1538 and the Group II strain W34/70. Saccharomyces pastorianus is a hybrid of Saccharomuyces cerevisiaie and Saccharomyces eubayanus. We report that the gene expression patterns are correlated with the gene copy number of S. cerevisiae and S. eubayanus alleles.
Project description:Saccharomyces pastorianus is the yeast used to make lager beer; it is known to be an interspecific hybrid formed by the fusion between S. cerevisiae and S. bayanus genomes. This data set queries 17 S. pastorianus strains, collected at various times over the last 125 years from various breweries located in different geographical locations, which were obtained from CBS and DBVPG culture collections. The data in this set represent array-CGH experiments performed with these strains, using "2-species" custom Agilent arrays (the "2-species" arrays contain probes spaced every ~2 kb across the whole genomes of both S. cerevisiae and S. bayanus; the probes are unique and specific for each genome). The data set also contains 3 self-self hybridizations (S. cerevisiae + S. bayanus DNA mixed together in equimolar amounts, then labeled green or red in separate reactions, then hybridized to the "2-species" arrays) used for normalization in CGH-Miner analysis. A strain or line experiment design type assays differences between multiple strains, cultivars, serovars, isolates, lines from organisms of a single species. Keywords: strain_or_line_design
Project description:Aims: We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. Methods and Results: The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. Conclusions: Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. Significance and Impact of the Study: Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.
Project description:Saccharomyces pastorianus is a natural yeast evolved from different hybridisation events between the mesophilic S. cerevisiae and the cold-tolerant S. eubayanus. This complex aneuploid hybrid carries multiple copies of the parental alleles alongside specific hybrid genes and encodes for multiple protein isoforms which impart novel phenotypes, such as the strong ability to ferment at low temperature. These characteristics lead to agonistic competition for substrates and a plethora of biochemical activities, resulting in a unique cellular metabolism. Here, we investigated the transcriptional signature of the different orthologous alleles in S. pastorianus during temperature shifts.
Project description:Aims: We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. Methods and Results: The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. Conclusions: Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. Significance and Impact of the Study: Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc.
Project description:We report the gene expression profile of two polypolid Saccharomyces pastorianus mutants obtained by random mutagenesis using radicicol. Mutants derived from the Group I strain CBS1538 and the Group II strain W34/70. Saccharomyces pastorianus is a hybrid of Saccharomuyces cerevisiaie and Saccharomyces eubayanus. We report changes in transcriptome of the mutants compared to their respective parental strain