Project description:Helicobacter pylori colonizes the stomach of half of the world's population, causing a wide spectrum of disease ranging from asymptomatic gastritis to ulcers to gastric cancer. Although the basis for these diverse clinical outcomes is not understood, more severe disease is associated with strains harboring a pathogenicity island. To characterize the genetic diversity of more and less virulent strains, we examined the genomic content of 15 H. pylori clinical isolates by using a whole genome H. pylori DNA microarray. We found that a full 22% of H. pylori genes are dispensable in one or more strains, thus defining a minimal functional core of 1281 H. pylori genes. While the core genes encode most metabolic and cellular processes, the strain-specific genes include genes unique to H. pylori, restriction modification genes, transposases, and genes encoding cell surface proteins, which may aid the bacteria under specific circumstances during their long-term infection of genetically diverse hosts. We observed distinct patterns of the strain-specific gene distribution along the chromosome, which may result from different mechanisms of gene acquisition and loss. Among the strain-specific genes, we have found a class of candidate virulence genes identified by their coinheritance with the pathogenicity island. Keywords: other
Project description:Helicobacter pylori (H. pylori) is a human pathogen that infects almost half of the world’s population. Infection with H. pylori is frequently associated with chronic gastritis and can even lead to gastric and duodenal ulcers and gastric cancer. Although the persistent colonization of H. pylori and the development of H. pylori-associated gastritis remain poorly understood, it is believed that, in gastric mucosa, the modulated gastric epithelial cells (GECs) by H. pylori are key contributors. We used microarrays to detail the global programme of gene expression in Helicobacter pylori infected-gastric epithelial cell line AGS cells and identified up-regulated genes induced by Helicobacter pylori infection.
Project description:In this study, a whole-genome CombiMatrix Custom oligonucleotide tiling microarray with 90000 probes covering six sequenced Helicobacter pylori(H. pylori) genomes was designed and utilized for comparative genomic profiling of eight unsequenced strains isolated from patients with different gastroduodenal diseases in Heilongjiang province of China. Since significant genomic variation were found among these strains, an additional 76 H. pylori stains with different clinical outcomes isolated from various provinces of China were further tested by PCR to demonstrate this distinction. We observed several highly variable regions among strains of gastritis, gastric ulceration and gastric cancer. They are involved in genes associated with bacterial type I, type II and type III R-M system as well as in a virB gene neighboring the well studied cag pathogenic island. Previous studies have reported the diverse genetic characterization of this pathogenic island, but it is conserved in the strains tested by microarray in this study. Moreover, a number of genes involved in the type IV secretion system related to DNA horizontal transfer between H. pylori strains were identified based on the comparative analysis of the strain specific genes. These findings may provide new insights for discovering biomarkers for prediction of gastric diseases. Here we describe the design and use of a high-density oligonucleotide microarray covering six sequenced H. pylori genomes as well as several sequenced plasmids. The performance of this microarray is evaluated, and its utility is illustrated for the hybridization of genomic DNA in order to compare eight uncharacterized H. pylori strains which have not been sequenced with the six known, sequenced strains. We utilize this microarray to identify variable genomic region among H. pylori strains isolated from patients with different gastroduodenal diseases in a Chinese patient population. H. pylori isolates from 2 patients with chronic superficial gastritis, 2 patients with atrophic gastritis, 2 patients with gastric ulcer, and 2 patients with gastric cancer were studied. All eight strains were isolated from Heilongjiang province of China. A number of variable regions with high genetic diversity was identified. 26 selected genes were validated by large scale PCR in both microarray tested strains while an additional 76 strains were isolated from eight provinces.
Project description:Helicobacter pylori colonizes the stomach of half of the world's population, causing a wide spectrum of disease ranging from asymptomatic gastritis to ulcers to gastric cancer. Although the basis for these diverse clinical outcomes is not understood, more severe disease is associated with strains harboring a pathogenicity island. To characterize the genetic diversity of more and less virulent strains, we examined the genomic content of 15 H. pylori clinical isolates by using a whole genome H. pylori DNA microarray. We found that a full 22% of H. pylori genes are dispensable in one or more strains, thus defining a minimal functional core of 1281 H. pylori genes. While the core genes encode most metabolic and cellular processes, the strain-specific genes include genes unique to H. pylori, restriction modification genes, transposases, and genes encoding cell surface proteins, which may aid the bacteria under specific circumstances during their long-term infection of genetically diverse hosts. We observed distinct patterns of the strain-specific gene distribution along the chromosome, which may result from different mechanisms of gene acquisition and loss. Among the strain-specific genes, we have found a class of candidate virulence genes identified by their coinheritance with the pathogenicity island.
Project description:Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray in vitro culture cells and in vivo patients of the chronic abdominal complaint. In this study,the effects of H. pylori infection on host gene expression in the gastric antral mucosa of patients with chronic gastritis were examined.
Project description:In this study, a whole-genome CombiMatrix Custom oligonucleotide tiling microarray with 90000 probes covering six sequenced Helicobacter pylori(H. pylori) genomes was designed and utilized for comparative genomic profiling of eight unsequenced strains isolated from patients with different gastroduodenal diseases in Heilongjiang province of China. Since significant genomic variation were found among these strains, an additional 76 H. pylori stains with different clinical outcomes isolated from various provinces of China were further tested by PCR to demonstrate this distinction. We observed several highly variable regions among strains of gastritis, gastric ulceration and gastric cancer. They are involved in genes associated with bacterial type I, type II and type III R-M system as well as in a virB gene neighboring the well studied cag pathogenic island. Previous studies have reported the diverse genetic characterization of this pathogenic island, but it is conserved in the strains tested by microarray in this study. Moreover, a number of genes involved in the type IV secretion system related to DNA horizontal transfer between H. pylori strains were identified based on the comparative analysis of the strain specific genes. These findings may provide new insights for discovering biomarkers for prediction of gastric diseases.
Project description:The purpose of this study was to examine macrophage proteomic changes induced by Helicobacter pylori. Macrophages utilized were the RAW 264.7 murine cell line. Macrophages were treated with H. pylori for 24 hours. The experimental design was a 4-plex isobaric tags for relative and absolute quantification (iTRAQ). In addition to uninfected control and H. pylori infected, the additional two conditions included an inhibitor of deoxyhypusine synthase (N1-guanyl-1,7-diamine-heptane, 1-(7-ammonioheptyl)guanidinium sulfate; GC7) an enzyme involved in the hypusination translation pathway, and the inhibitor plus H. pylori.
Project description:The human gastric pathogen Helicobacter pylori is extremely well adapted to the highly acidic conditions encountered in the stomach. The pronounced acid resistance of H. pylori relies mainly on the ammonia-producing enzyme urease, however, urease-independent mechanisms are likely to contribute to acid adaptation. Acid-responsive gene regulation is mediated at least in part by the ArsRS two-component system consisting of the essential OmpR-like response regulator ArsR and the non-essential cognate histidine kinase ArsS whose autophosphorylation is triggered in response to low pH. In this study by global transcriptional profiling of an ArsS-deficient H. pylori mutant grown at pH 5.0 we define the ArsR~P- dependent regulon consisting of 110 genes including the urease gene cluster, the genes encoding the aliphatic amidases AmiE and AmiF and the rocF gene encoding arginase. Keywords: Identification of an ArsRS-Regulon