Project description:Unplanned oil spills during offshore production are a serious problem for the industry and the marine environment. Here, we present the genome sequence analysis of three novel hydrocarbon-degrading bacteria, namely, "Candidatus Colwellia aromaticivorans" sp. nov., "Candidatus Halocyntiibacter alkanivorans" sp. nov., and "Candidatus Ulvibacter alkanivorans" sp. nov.
Project description:A pure culture of an actinobacterium previously described as 'Candidatus Rhodoluna lacicola' strain MWH-Ta8 was established and deposited in two public culture collections. Strain MWH-Ta8(T) represents a free-living planktonic freshwater bacterium obtained from hypertrophic Meiliang Bay, Lake Taihu, PR China. The strain was characterized by phylogenetic and taxonomic investigations, as well as by determination of its complete genome sequence. Strain MWH-Ta8(T) is noticeable due to its unusually low values of cell size (0.05 µm(3)), genome size (1.43 Mbp), and DNA G+C content (51.5 mol%). Phylogenetic analyses based on 16S rRNA gene and RpoB sequences suggested that strain MWH-Ta8(T) is affiliated with the family Microbacteriaceae with Pontimonas salivibrio being its closest relative among the currently described species within this family. Strain MWH-Ta8(T) and the type strain of Pontimonas salivibrio shared a 16S rRNA gene sequence similarity of 94.3?%. The cell-wall peptidoglycan of strain MWH-Ta8(T) was of type B2? (B10), containing 2,4-diaminobutyric acid as the diamino acid. The predominant cellular fatty acids were anteiso-C15?:?0 (36.5?%), iso-C16?:?0 (16.5?%), iso-C15?:?0 (15.6?%) and iso-C14?:?0 (8.9?%), and the major (>10?%) menaquinones were MK-11 and MK-12. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unknown glycolipids. The combined phylogenetic, phenotypic and chemotaxonomic data clearly suggest that strain MWH-Ta8(T) represents a novel species of a new genus in the family Microbacteriaceae, for which the name Rhodoluna lacicola gen. nov., sp. nov. is proposed. The type strain of the type species is MWH-Ta8(T) (?=?DSM 23834(T)?=?LMG 26932(T)).
Project description:Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information has been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light, while protein synthesis is upregulated in the dark. Based on the action spectrum of the growth effect, and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.
Project description:Light is a source of energy and an environmental cue that is available in excess in most surface environments. In prokaryotic systems, conversion of light to energy by photoautotrophs and photoheterotrophs is well understood, but the conversion of light to information and the cellular response to that information has been characterized in only a few species. Our goal was to explore the response of freshwater Actinobacteria, which are ubiquitous in illuminated aquatic environments, to light. We found that Actinobacteria without functional photosystems grow faster in the light, likely because sugar transport and metabolism are upregulated in the light, while protein synthesis is upregulated in the dark. Based on the action spectrum of the growth effect, and comparisons of the genomes of three Actinobacteria with this growth rate phenotype, we propose that the photosensor in these strains is a putative CryB-type cryptochrome. The ability to sense light and upregulate carbohydrate transport during the day could allow these cells to coordinate their time of maximum organic carbon uptake with the time of maximum organic carbon release by primary producers.