Project description:The Dicyemida and Orthonectida are two groups of tiny, simple, vermiform parasites that have historically been united in a group named the Mesozoa. Both Dicyemida and Orthonectida have just two cell layers and appear to lack any defined tissues. They were initially thought to be evolutionary intermediates between protozoans and metazoans but more recent analyses indicate that they are protostomian metazoans that have undergone secondary simplification from a complex ancestor. Here we describe the first almost complete mitochondrial genome sequence from an orthonectid, Intoshia linei, and describe nine and eight mitochondrial protein-coding genes from Dicyema sp. and Dicyema japonicum, respectively. The 14,247 base pair long I. linei sequence has typical metazoan gene content, but is exceptionally AT-rich, and has a unique gene order. The data we have analysed from the Dicyemida provide very limited support for the suggestion that dicyemid mitochondrial genes are found on discrete mini-circles, as opposed to the large circular mitochondrial genomes that are typical of the Metazoa. The cox1 gene from dicyemid species has a series of conserved, in-frame deletions that is unique to this lineage. Using cox1 genes from across the genus Dicyema, we report the first internal phylogeny of this group.
Project description:Expression data from B. japonicum stress response; aerobic treatment of B. japoncium culture under different stress conditons; pH stress (8 and 4; 4 h); salt stress (80 mM NaCl; 4 h); heat shock (43 °C; 15 min) and temperature stress (35.2 °C; 48 h); as reference wildtype without treatment (AG media; pH 6.9; without NaCl; 28 °C) was used heat shock data were verified by using rpoH-mutant strains B. japonicum 5009; B. japonicum 5032 and B. japonicum 09-32 as described in Narberhaus et al. 1997
Project description:Chinese and Philippine strains of the blood fluke Schistosoma japonicum present clear and distinctive phenotypes in areas of fecundity, pathology, drug sensitivity and immunology. Despite these differences large scale sequencing efforts have focused solely on Chinese mainland strain of the parasite. We have undertaken a comparative genomic hybridisation (CGH) approach to highlight some of the structural differences in the genome of two of the major geographical isolates of S. japonicum. We identified seven distinct regions of the S. japonicum genome that present differential CGH between Chinese and Philippine strains of the blood fluke Schistosoma japonicum, representing either deletion or duplication regions in the Philippine strain. Within these regions, genes that may be related to phenotypical differences are identified and discussed.
Project description:It is well recognized that parasitic helminth infections, which afflict more than one billion people globally, correlate with a decreased prevalence of metabolic diseases, including obesity and type 2 diabetes, but the molecular mechanisms involved remain to be determined. Using microarrays, we quantified the temporal gene expression profiles in the liver of Schistosoma japonicum-infected C57BL/6 mice at 9 weeks post infection with that from uninfected mice as controls. More than 150 miRNAs were differentially expressed in the liver during S. japonicum infection, and miRNA-mRNA network would provide new evidence for the negtive correlation between S. japonicum infection and metabolism.
Project description:Key tissues of the adult female parasite involved in nutritional uptake and reproduction were examined using a novel gene discovery approach that combined laser microdissection microscopy and microarray analyses. Gastrodermis, vitelline glands and ovary were microdissected from unfixed, frozen sections of the Asian species, Schistosoma japonicum. Total RNA was isolated from the enriched tissue preparations and microarray analyses undertaken to generate tissue specific gene expression profiles.
Project description:Legumes interact with nodulating bacteria that convert atmospheric nitrogen into ammonia for plant use. This nitrogen fixation takes place within root nodules that form after infection of root hairs by compatible rhizobia. Using cDNA microarrays, we monitored gene expression in soybean (Glycine max) inoculated with the nodulating bacterium Bradyrhizobium japonicum 4, 8, and 16 days after inoculation (dai), time points that coincided with nodule development and the onset of nitrogen fixation. This experiment identified several thousand genes that were differentially expressed in response to B. japonicum inoculation. Expression of 27 genes was analyzed by qRT-PCR and their expression patterns mimicked the microarray results confirming integrity of analyses. The microarray results suggest that B. japonicum reduces plant defense responses during nodule development. In addition, the data revealed a high level of regulatory complexity (transcriptional, post-transcriptional, translational, post-translational) that is likely essential for development of the symbiosis and adjustment to an altered nutritional status. Keywords = symbiosis Keywords = nodulation Keywords = rhizobium Keywords = defense Keywords = ANOVA Keywords = plant loop design, 7 samples, 7 comparison, 2 technical repeats including dye swaps, 4 biological repeats