Project description:Purpose: In this work, we evaluated the role of two indicative species, Citrobacter werkmanii (CW) and Escherichia albertii (EA), in the virulence of two DEC pathotypes, Shiga toxin-producing (STEC) and enteroaggregative (EAEC) Escherichia coli. Methods: To determine the effect of supernatant obtained from CW and EA cultures in STEC strain 86-24 and EAEC strain 042 gene expression, a RNA-seq analysis was performed. T84 cells were infected with DEC strains in the presence or absence of supernatant from EA and IL-8 secretion was evaluated. The effect of supernatant from EA on the growth and adherence of STEC and EAEC to T84 cells was also evaluated. Finally, we studied the participation of long polar fimbriae (Lpf) in STEC and plasmid-encoded toxin (Pet) in EAEC during DEC infection in the presence of supernatant from EA. Results: RNA-seq analysis revealed that several virulence factors in STEC and EAEC were up-regulated in the presence of supernatants from CW and EA. Interestingly, an increase in the secretion of IL-8 was observed in T84 cells infected with STEC or EAEC in the presence of a supernatant from EA. Similar results were observed with the supernatants obtained from clinical strains of E. albertii. Supernatant from EA had no effect on the growth of STEC and EAEC, or on the ability of these DEC strains to adhere to intestinal epithelial cells. Finally, we found that Pet toxin in EAEC was up-regulated in the presence of a supernatant from EA. In STEC, using mutant strains for Lpf fimbriae, our data suggested that these fimbriae might be participating in the increase of IL-8 induced by STEC on intestinal epithelial cells in the presence of a supernatant from EA. Conclusion:Supernatant obtained from an indicative species of DEC-positive diarrhea could modulate gene expression in STEC and EAEC, and IL-8 secretion induced by these bacteria. These data provide new insights into the effect of gut microbiota species in the pathogenicity of STEC and EAEC.
Project description:Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a notorious foodborne pathogen capable of causing severe gastrointestinal infections in humans. The bovine rectoanal junction (RAJ) has been identified as a primary reservoir of STEC O157:H7, playing a critical role in its transmission to humans through contaminated food sources. Despite the relevance of this host-pathogen interaction, the molecular mechanisms behind the adaptation of STEC O157:H7 in the bovine RAJ and its subsequent infection of human colonic epithelial cells remain largely unexplored. This study aimed to unravel the intricate dynamics of STEC O157:H7 in two distinct host environments: bovine RAJ squamous epithelial (RSE) cells and human colonic epithelial cells. Comparative transcriptomics analysis was employed to investigate the differential gene expression profiles of STEC O157:H7 during its interaction with these cell types. The bacterial cells were cultured under controlled conditions to simulate the microenvironments of both bovine RAJ and human colonic epithelial cells. Using high-throughput RNA sequencing, we identified key bacterial genes and regulatory pathways that are significantly modulated in response to each specific host environment. Our findings reveal distinct expression patterns of virulence factors, adhesion proteins, and stress response genes in STEC O157:H7 grown in bovine RAJ cells as opposed to human colonic epithelial cells. Additionally, the comparative analysis highlights the potential role of certain genes in host adaptation and tissue-specific pathogenicity. Furthermore, this study sheds light on the potential factors contributing to the survival and persistence of STEC O157:H7 in the bovine reservoir and its ability to colonize and cause disease in humans.
Project description:These E. coli strains were grown with various signaling molecules and the expression profiles were determined. Keywords: addition of quorum and host hormone signals