Project description:Neonatal morbidities are associated with long term neurological deficits in life and have also been associated with dysbiosis. We tested whether optimizing the neonate's microbiome through maternal probiotic supplementation can improve offspring's neurodevelopmental outcomes. Maternal LB supplementation, carried out by giving Lactobacillus acidophilus and Bifidobacterium infantis (LB) to pregnant C57/BL6J mice daily from E16 to weaning, significantly suppressed postnatal peripheral proinflammatory insult-induced systemic inflammation and normalized compromised blood-brain barrier permeability and tight junction protein expression in the offspring at pre-weaned age. Maternal LB exposure also regulated markers associated with leukocyte transendothelial migration, extracellular matrix injury and neuroinflammation. The suppressed neuroinflammation by maternal LB supplementation was associated with reduced astrocyte/microglia activation and downregulation of the transcriptional regulators CEBPD and I?B?. Furthermore, maternal LB supplementation promoted neuronal and oligodendrocyte progenitor cell development. Our study demonstrates the efficacy of maternal LB supplementation in modulating systemic and central nervous system inflammation as well as promoting neural/oligodendrocyte progenitor development in the offspring. This evidence suggests that maternal probiotic supplementation may be a safe and effective strategy to improve neurological outcomes in the offspring.
Project description:Primary objectives: Characterization of the macrophage population subset that is modulated by enteric neurons
Primary endpoints: Characterization of the macrophage population subset that is modulated by enteric neurons via RNA sequencing
Project description:To investigate the role of PexRAP/ADHAPR in adipose tissue, we use adiponectin-driven Cre recombinase to delete Dhrs7b, the gene which encodes PexRAP/ADHAPR, from all adipose depots. This study assays gene expression in subcutaneous adipose tissue (iWAT) of 8 week old chow-fed male mice.