Project description:Lactococcus garvieae BCC 43578 produces a novel class II bacteriocin, garvieacin Q (GarQ), 70 amino acids in length and containing a 20-amino-acid N-terminal leader peptide. It is cleaved at the Gly-Gly site to generate the mature GarQ (5,339 Da), which is especially inhibitory against Listeria monocytogenes ATCC 19115 and other L. garvieae strains.
Project description:The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen.
Project description:This report describes the morphological characterization and genome analysis of an induced prophage (PLg-TB25) from a dairy strain of Lactococcus garvieae. The phage belongs to the Siphoviridae family and its morphology is typical of other lactococcal phages. A general analysis of its genome did not reveal similarities with other lactococcal phage genomes, confirming its novelty. However, similarities were found between genes of its morphogenesis cluster and genes of Gram-positive bacteria, suggesting that this phage genome resulted from recombination events that took place in a heterogeneous microbial environment. An in silico search for other prophages in 16 L. garvieae genomes available in public databases, uncovered eight seemingly complete prophages in strains isolated from dairy and fish niches. Genome analyses of these prophages revealed three novel L. garvieae phages. The remaining prophages had homology to phages of Lactococcus lactis (P335 group) suggesting a close relationship between these lactococcal species. The similarity in GC content of L. garvieae prophages to the genomes of L. lactis phages further supports the hypothesis that these phages likely originated from the same ancestor.
Project description:Lactococcus garvieae junior synonym Enterococcus seriolicida) is an emerging zoonotic agent isolated from economically important fish (rainbow trout and yellowtail), from cattle, and from humans. Clindamycin susceptibility is the only phenotypic test which can differentiate L. garvieae from Lactococcus lactis, another emerging agent in humans. A PCR assay for the identification of L. garvieae was developed and resulted in an amplified fragment of 1,100 bp in size. The PCR assay was shown to be specific to L. garvieae. The PCR assay was positive for all the L. garvieae strains tested, which originated from three different continents (Asia, Australia, and Europe). The PCR assay was negative for the phenotypically similar L. lactis and for all the other fish pathogens tested, including Streptococcus iniae and Aeromonas salmonicida. The PCR assay was applied to plasma obtained from diseased animals and was found sensitive enough to detect bacteria from 1 microl of plasma. The PCR assay that was developed is the only practical test besides the clindamycin test which can specifically identify the zoonotic agent L. garvieae and which can differentiate it from L. lactis.
Project description:Nonagglutinating Lactococcus garvieae has been isolated from diseased farmed yellowtail in Japan since 2012. In this study, the complete genome and plasmid sequence of nonagglutinating L. garvieae strain 122061 was determined, to our knowledge, for the first time.
Project description:Lactococcus garvieae is a fish pathogen and an emerging zoonotic opportunistic pathogen as well as a component of natural microbiota in dairy products. Here, we present the first report of a genome sequence of L. garvieae TB25, isolated from a dairy source, and that of L. garvieae LG9, isolated from rainbow trout.